Product catalog
2024
Engineering Center Energoservice is an R&D company located in Northwest Russia. Founded in 1992, Energoservice has grown into one of the largest privately held Russian companies producing electronic devices for power generation, transmission and distribution.

The history of our products operating in automated control systems at substations and power plants, as well as in automation of industrial power systems, spans two decades.

We always strive for excellence in technical features and seek innovative approaches when designing new products. We focus on customer feedback keeping firmware up to date.

We present our latest product catalog containing a wide range of intelligent electronic devices, measuring devices, input and output modules, and remote terminal units.

We thank our customers and partners for their trust and interest in our products.
<table>
<thead>
<tr>
<th>Page</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>ENIP-2</td>
<td>multifunctional measuring devices</td>
</tr>
<tr>
<td>12</td>
<td>ESM</td>
<td>smart meters</td>
</tr>
<tr>
<td>16</td>
<td>ENMU</td>
<td>stand-alone merging units</td>
</tr>
<tr>
<td>18</td>
<td>ENMI</td>
<td>display modules</td>
</tr>
<tr>
<td>22</td>
<td>ENMV</td>
<td>I/O modules</td>
</tr>
<tr>
<td>28</td>
<td>ENLZ</td>
<td>short-circuit and earth fault controllers</td>
</tr>
<tr>
<td>30</td>
<td>ENCS-2</td>
<td>time sync modules</td>
</tr>
<tr>
<td>32</td>
<td>ENCS-3M, ENCM-3</td>
<td>remote terminal units</td>
</tr>
<tr>
<td>38</td>
<td>WAMS</td>
<td>synchrophasors acquisition and real-time data analysis</td>
</tr>
<tr>
<td>40</td>
<td>CABINETS</td>
<td>typical and customized cabinets for automation systems</td>
</tr>
<tr>
<td>44</td>
<td>OPTIONS AND ACCESSORIES</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>SOLUTIONS</td>
<td></td>
</tr>
</tbody>
</table>
ENIP-2 measures the parameters of a three-phase electric network at substations, power plants, industrial enterprises, and distribution power grids.

The accuracy of measurements and the performance of ENIP-2 meet the requirements of modern automatic control systems. The instrument provides measurements of all harmonic components (True RMS) and separately of basic harmonics.

The ENIP-2 can have up to five interfaces providing data transmission to automated systems using standard exchange protocols. Any interface can be used for both data transmission and device configuration and firmware upgrade.

The USB port allows you to configure and update firmware even without external power.

The input of digital signals, the output of control commands, and analog signals are provided through built-in inputs and outputs or through up to 10 external I/O modules (e.g. ENMV-1). To visualize the measurements, an ENMI display module may connected to ENIP-2.

ENIP-2 is offered in four implementations:

- Standard - the main line of transducers for wide applications at power facilities;
- Panel - transducers with HMI;
- Compact - for remote control and monitoring of 6-20 kV switchgear;
- PMU - for WAMS and precise frequency measurement.

The ENIP-2 versions differ by functionality, interfaces, additional input-output combinations, exchange protocols, and designs.
ENIP-2 Standard

The ENIP-2 standard has a plastic housing and could be mounted on DIN-rail. If necessary, access to terminals can be restricted with a sealing cover.

Modifications ENIP-2 Standard differ from each other in the composition of interfaces and sets of inputs and outputs for discrete input-output and analog output.

Minimum

One or two RS-485 ports. The second RS-485 port can be used for a redundant data transmission channel, or for connecting external devices.

Minimum plus

A set of digital inputs, digital inputs and outputs, or analog outputs. 10 LED indicators.

Optimal

Three RS-485 ports and one 100Base-TX.

Maximum

Two RS-485 ports and two 100Base-TX/FX (RSTP, PRP).

Only measuring inputs:
Minimum — 1(2) × RS-485

With additional input-output:
Minimum plus — 2 × RS-485
Optimal — 3 × RS-485, 1 × Ethernet
Maximum — 2 × RS-485, 2 × Ethernet
<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal (rated) current and voltage</td>
<td>1 or 5 A; 57.7/100, 230/400, 400/690 V (phase /line)</td>
</tr>
<tr>
<td>Voltage measurement accuracy</td>
<td>Full Scale: ±0.2 %
Readings: ±0.2 % ($0.2U_{nom} \leq U < 1.5U_{nom}$), ±0.75 % ($0.05U_{nom} \leq U < 0.2U_{nom}$)</td>
</tr>
<tr>
<td>Current measurement accuracy</td>
<td>Full Scale: ±0.2 %
Readings: ±0.2 % ($0.1I_{nom} \leq I < 2I_{nom}$), ±0.75 % ($0.02I_{nom} \leq I < 0.1I_{nom}$), ±2.0 % ($0.01I_{nom} \leq I < 0.02I_{nom}$)</td>
</tr>
<tr>
<td>Power (active, reactive, apparent) measurement accuracy</td>
<td>Full Scale: ±0.5 %
Readings: ±0.5 % ($0.2I_{nom} \leq I < 2I_{nom}$, $0.2U_{nom} \leq U < 1.5U_{nom}$)</td>
</tr>
<tr>
<td>Frequency measurement accuracy</td>
<td>±10 mHz</td>
</tr>
<tr>
<td>Measurement time / update time</td>
<td>50 msec (sliding window) / 20 msec, configurable averaging period</td>
</tr>
<tr>
<td>Additional measured and computable parameters</td>
<td>cos, tg, angles (phase and average), active and reactive energy, U_0, U_1, U_2, K_{U0}, K_{U1}, K_{U2}, I_0, I_1, I_2, K_{I0}, K_{I1}, K_{I2}, THD</td>
</tr>
<tr>
<td>Digital signals</td>
<td>up to 32 processed signals: statuses of built-in digital inputs and outputs, statuses of inputs and outputs of external ENMV-1 modules, logical expressions, GOOSE subscriptions, diagnostic signals</td>
</tr>
<tr>
<td>Digital inputs</td>
<td>0, 4 or 8 inputs (wet or dry contact, debounce filtering), U_{nom}/U_{max}: 24/250 VDC, 110/150 VDC, 220/250 VDC</td>
</tr>
<tr>
<td>Digital outputs</td>
<td>0 or 3 outputs: 300 VDC/250 VAC, 0.1 A</td>
</tr>
<tr>
<td>Logical expressions</td>
<td>up to 32 expressions in 32 functions (AND, OR, CMP, TIMER, VALID)</td>
</tr>
<tr>
<td>Analog outputs</td>
<td>4 customized outputs, signal range: ±5 mA, ±20 mA, ±24 mA, 0...5 mA, 0...20 mA, 0...24 mA, 4...20 mA</td>
</tr>
<tr>
<td>Event logging</td>
<td>I/O history, event log</td>
</tr>
<tr>
<td>Extension modules</td>
<td>display modules: ENMI-3, ENMI-4m, ENMI-4e, ENMI-7; digital inputs/outputs (up to 10 modules): ENMV-1, ITS2</td>
</tr>
<tr>
<td>Interfaces and protocols</td>
<td>1, 2 or 3 × RS-485 (600...115200 baud): Modbus RTU, IEC 60870-5-101; USB; 1 or 2 × 100Base-TX, 2 × 100Base-FX LC MM; IEC 61850 (ed. 2), IEC 60870-5-104, IEC 60870-5-101 (UDP), Modbus TCP, Modbus RTU, SNMP, web-console, RS-485 tunneling via TCP/IP; PRP, RSTP for 2 Ethernet ports modifications</td>
</tr>
<tr>
<td>Real-time clock</td>
<td>500 µs (error less than 5 s per day without sync); Time sync: IEC 60870-5-101, IEC 60870-5-104, SNTP</td>
</tr>
<tr>
<td>Power supply</td>
<td>18...36 VDC, 40...160 VDC, 120...370 VDC or 100...265 VAC (45...55 Hz), up to 13 VA (19 VA with ENMI)</td>
</tr>
<tr>
<td>Operating conditions</td>
<td>–40...+70 °C</td>
</tr>
<tr>
<td>Design</td>
<td>75 × 100 × 110 mm (IP40)</td>
</tr>
<tr>
<td>Mounting</td>
<td>DIN-rail TH35 mounting</td>
</tr>
</tbody>
</table>
Ordering Information

Rated current
- 1 A
- 5 A

Rated voltage
- 100 — 57.7 (100) V
- 400 — 230 (400) V
- 690 — 400 (690) V

Power supply voltage
- 220 — 120...370 VDC or 100...265 VAC
- 110 — 40...160 VDC
- 24 — 18...36 VDC

Digital inputs operating voltage
- (220) — 220 VDC
- (110) — 110 VDC
- if not specified — 24 VDC or without inputs

Interfaces and analog outputs (AO)
- A2E0-41 — 2 × RS-485, 4 × AO
- A3E4-41 — 3 × RS-485, 1 × 100Base-TX, 4 × AO
- A2E4x2-41 — 2 × RS-485, 2 × 100Base-TX, 4 × AO
- A2E4x2FX-41 — 2 × RS-485, 2 × 100Base-FX, 4 × AO

Interfaces, digital inputs (DI), digital outputs (DO)
- A1E0-01 — 1 × RS-485
- A2E0-01 — 2 × RS-485
- A2E0-11 — 2 × RS-485, 4 × DI, 3 × DO
- A2E0-21 — 2 × RS-485, 8 × DI
- A3E4-11 — 3 × RS-485, 1 × 100Base-TX, 4 × DI, 3 × DO
- A3E4-21 — 3 × RS-485, 1 × 100Base-TX, 8 × DI
- A2E4x2-11 — 2 × RS-485, 2 × 100Base-TX, 4 × DI, 3 × DO
- A2E4x2-21 — 2 × RS-485, 2 × 100Base-TX, 8 × DI
- A2E4x2FX-11 — 2 × RS-485, 2 × 100Base-FX, 4 × DI, 3 × DO
- A2E4x2FX-21 — 2 × RS-485, 2 × 100Base-FX, 8 × DI

Options and accessories
- IEC 61850-8-1 activation — ES61850.enip
- RS-485 splitter — EX...
- Surge protection devices for RS-485 — ESP485...
- Surge protection devices for Ethernet — ESP-LAN
- Sealing cover — PC1015
- USB 2.0 cable, male A to male B, 1 m — USB-A-B

Certification
Conformance to IEC 61850 – UCAiug Level A Certificate IEC 61850 Ed.1, Ed.2 (DNV GL)

Conformance to LVS EN 61010-1:2011 (EN 61010-1:2010), EN 61000-4-3, EN 61000-4-4, EN 61000-4-5, EN 61000-4-6, EN 61000-4-8, EN 61000-4-11.
ENIP-2 Compact

ENIP-2 Compact is designed for medium voltage switchgear cells, for which compact size and rich I/O functionality are the key requirements. ENIP-2 Compact has digital inputs and relay outputs, two redundant 24 VDC power inputs, and three analog inputs for monitoring voltage presence.

Basic

- 2 RS-485 ports, 2 power supply inputs
- USB
- 3 voltage indication inputs
- Voltage measuring inputs
- LEDs (interfaces, I/O statuses)
- 3 built-in electromagnetic relay outputs
- 12 digital inputs (wet contact)
- Current measuring inputs

Minimal

- Single phase current measuring input
Specification

Measurements
Please, see page 4
+ plus 3 voltage indication inputs (1...300 VAC)

Digital signals
up to 32 processed signals: statuses of built-in digital inputs and outputs, statuses of digital inputs and outputs of external modules ENMV-1, logical expressions, diagnostic signals

Digital inputs
12 (dry or wet contact 24 VDC), debounce filter

Digital outputs
3 outputs: 250 V, 6A DC / AC

Logical expressions
up to 32 expressions in 32 functions (AND, OR, CMP, TIMER, VALID)

Event logging
I/O history, event log

Extension modules
display modules: ENMI-3, ENMI-4m, ENMI-7;
digital inputs/outputs (up to 10 modules): ENMV-1, ITS2

Interfaces and protocols
2 × RS-485 (600...115200 baud): Modbus RTU, IEC 60870-5-101; USB

Real-time clock
500 µs (error less than 5 s per day without sync);
Time sync: IEC 60870-5-101, IEC 60870-5-104, SNTP

Power supply
18...36 VDC, 11 W

Operating conditions and Design
-40...+70 °C; 136 × 100 × 67 mm, IP20

Mounting
DIN-rail TH35 mounting, or special bracket (please see Options and Accessories)

Ordering Information

Connection type
1 — single-phase (Minimal)
4 — three-phase (Basic)

Rated current
1 — 1 A
5 — 5 A

Rated voltage
0 — without measuring inputs voltage
100 — 57.7 V (L-L 100 V)
400 — 230 V (L-L 400 V)

Options and accessories
RS-485 splitter — EX...
Surge protection devices for RS-485 — ESP485...
Bracket for ENIP-2...-32 — RM6-KP
USB 2.0 cable, male A to male B, 1 m — USB-A-B
ENIP-2 PMU

ENIP-2 PMU performs phasor measurements in accordance with IEEE C37.118.1 classes P and M.

Built-in GPS/GLONASS receiver or an external ENCS-2 time sync module can be used for time synchronization. ENIP-2 PMU supports IEEE 1588v2 PTP and IRIG-A/B.

ENIP-2 PMU is equipped with a color touch-screen display for visualization of measurement data.

A modification of ENIP-2 PMU with IEC 61850-9-2 digital inputs is aimed for use at digital substations.
Specification

Synchrophasors of the voltages and currents (main harmonic), frequency: nominal frequency 50/60 Hz (operating range 45-55/55-65 Hz), the measurements in accordance with C37.118.1 (class P and M), TVE < 1%, FE ≤ 0.001 Hz, RFE ≤ 0.1 Hz/sec, the frequency of data transmission — 1/2/5/10/25/50/100 frames per second.

The parameters of three-phase power grid (main harmonic, RMS): Please, see page 4.

Real-time clock: time accuracy: 1 µs with time sync (error less than 0.4 s per day without sync), time sync on IEEE 1588v2 PTP, RS-485 (IRIG A/B) or built-in GPS/GLONASS-receiver.

Interfaces and protocols: 1 × RS-485 (IRIG A/B), 1 or 2 × 100Base-TX: C37.118.2, IEC 60870-5-104, IEC 60870-5-101 UDP, Modbus TCP, Modbus RTU UDP.

Digital inputs/outputs: 5 digital inputs (dry contact, 24 VDC), 3 digital outputs (only for ENIP-2-0).

Options: 4.3” TFT color touch screen display, 480 × 272; built-in GPS/GLONASS-receiver; 8 GB storage.

Power supply: 18...36 VDC or 120...370 VDC / 100...265 VAC (45...55 Hz), 13 VA.

Operating conditions and design: -40...+70 °C or -20...+70°C if equipped with TFT display / 160 × 165 × 83 mm, IP40.

Ordering Information

The type of input the measured signals:
- 4I/U — analog inputs
 - I:
 - 1 — 1 A
 - 5 — 5 A
 - U:
 - 100 — 57.7 (100) V
 - 400 — 230 (400) V
 - 0 — 100Base-T (IEC 61850-9-2LE)

Interfaces and options:
- ENIP-2-03 — 1 × RS-485, 1 × 100Base-TX, 5 digital inputs
- ENIP-2-13 — ... + TFT color touch screen display
- ENIP-2-23 — ... + built-in GPS/GLONASS-receiver
- ENIP-2-13-PTP — 1 × RS-485, 2 × 100Base-TX, IEEE 1588v2 PTP, TFT color touch screen display, 5 digital inputs

Power supply voltage:
- 220 — 100...265 VAC (45...55 Hz) or 120...370 VDC
- 24 — 18...36 VDC

Options and accessories:
- Outdoor GPS/GLONASS antenna — GPS-P
- Mounting brackets for GPS/GLONASS antenna — GPS-KP...
- Surge protection devices for Ethernet — ESP-LAN
- Additional 8 GB memory for registration and storage — SD8G.pmu
ENIP-2 Panel

ENIP-2 Panel is a multifunctional measuring transducer with HMI, installed in the cells of switchgear, on the panel, and in the cabinets.

Measurements and other information are displayed on the color touch screen display (4.3" TFT, 480 × 272). Information display modes are controlled via a touch interface or buttons.

Unlike other versions of the ENIP-2 series, this modification has universal measuring inputs, to which it is possible to connect current circuits with rated values of 1 and 5 A, and voltage circuits with rated values of 57.7, 230, and 400 V (phase). Thus, when ordering ENIP-2 panel does not need to choose values of input signals.

On the back of the instrument, there are measuring inputs of current and voltage, power supply terminals, and RJ45 sockets of interfaces. Current circuits are inserted via built-in current sensors.

If it is necessary to provide a screw connection of current circuits, the device is supplemented by an organizer bracket with a thermally/transit screw terminal. The default instrument is for panel installation, but can also be installed on DIN rail with additional accessories.

From one to ten ENMV-1 or other modules can be connected to any of the RS-485 ports to process digital and analog signals and to output control commands.
Specification

Nominal (rated) current and voltage
1 and 5 A; 57.7/100, 230/400 и 400/690 V (phase /line)
20 A; 1000 V

Measurement range
2.8 V ≤ U ≤ 460 V (0.5 V ≤ U ≤ 1000 V)
0.01 A ≤ I ≤ 10 A (0.005 A ≤ I ≤ 20 A)

Measurement accuracy, % Reading
U: ±0.75 % (2.8 V ≤ U < 11.54 V)
±0.2 % (11.54 V ≤ U ≤ 460 V)
I: ±2 % (0.01 A ≤ I < 0.02 A)
±0.75 % (0.02 A ≤ I < 0.1 A)
±0.2 % (0.1 A ≤ I ≤ 20 A)

Measurement accuracy
f: ± 0.01 Hz; cosφ: 0.01 (0.1 A ≤ I ≤ 10 A, 2.8 V ≤ U ≤ 460 V); angle: ± 0.1°

Additional measured and computable parameters
cos, tg, angles (phase and average), active and reactive energy, U₀, U₁, U₂, K₂₀, Kₓ,
l₀, l₁, l₂, Kₓ, Kₜ, THD

Extension modules
display modules: ENMI-3, ENMI-4m, ENMI-4e, ENMI-7;
digital inputs/outputs (up to 10 modules): ENMV-1, ITS2

Digital signals
up to 32 processed signals: statuses of inputs and outputs of external ENMV-1 modules, logical expressions, diagnostic signals

Event logging
I/O history, event log

Interfaces and protocols
1 or 2 × RS-485 (600...115200 baud): Modbus RTU, IEC 60870-5-101; USB;
1 × 100Base-TX: IEC 60870-5-104, IEC 60870-5-101 (UDP), Modbus TCP, Modbus RTU, SNMP, web-console, RS-485 tunneling via TCP/IP

Real-time clock
500 µs (error less than 5 s per day without sync);
Time sync: IEC 60870-5-101, IEC 60870-5-104, SNTP

Power supply
18...36 VDC, 40...160 VDC, 120...370 VDC or 100...265 VAC (45...55 Hz),
up to 10 VA

Operating conditions and Design
−40...+70 °C, 120 × 120 × 49 mm (IP40 front site, IP30 back site)

Mounting
panel or DIN-rail TH35 mounting

Ordering Information

ENIP-2-□-□-04

Options and accessories

Bracket organizer — P-KP, PDIN-KP, PXT-KP
RS-485 splitter — EX...
Surge protection devices for RS-485 — ESP485...
Surge protection devices for Ethernet — ESP-LAN
USB 2.0 cable, male A to male B, 1 m — USB-A-B
ESM smart meter operates as a revenue meter (IEC 62052-11), power quality analyzer (IEC 61000-4-30), and a multifunctional measuring device.

As a revenue meter, ESM measures four-quadrant active and reactive energy, and uses its built-in memory to store power demand and energy readings by time-of-use (TOU) tariffs.

As a power quality analyzer, ESM conforms to Classes A and S of IEC 61000-4-30:2008. ESM provides immediate data and automatically generated power quality reports.

As a multifunctional measuring device, ESM provides measurement data via standard communication protocols for integration with automation systems. ESM supports IEC 61850 (ed. 2), the implementation of which is certified UCAiug Level A by DNV GL (KEMA).

Similar to ENIP-2, ESM can connect to ENMV-1 modules for digital input and output. ENMI display modules are used for visualization.
ESM is available in three modifications that differ in the type of connection to the measuring circuits. All modifications provide the same set of functions.

ESM-HV

Connects to conventional electromagnetic current and voltage transformers, as well as directly to the voltage circuits 230 V, 400 V.

ESM-ET

Connects to electronic current and voltage transformers: Rogowski coils, low-power current transformers, and voltage dividers.

ESM-SV

Connects to the process bus of the digital substation for receiving sampled values of current and voltage (IEC 61850-9-2) from digital current and voltage transformers or merging units (see ENMU on page 16).
Specification

<table>
<thead>
<tr>
<th>Feature</th>
<th>ESM-HV</th>
<th>ESM-ET</th>
<th>ESM-SV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection type</td>
<td>to conventional instrument current and voltage transformers</td>
<td>to electronic instrument current and voltage transformers</td>
<td>to process bus network: 3 × 100Base-TX, PRP up 4 SV (SV240, SV256, SV288)</td>
</tr>
<tr>
<td>Rated (nominal) input values</td>
<td>(I_{\text{nom}}: 1/5 , \text{A} (I_{\text{max}} 10 , \text{A})) (starts from 0.001(\text{A}))</td>
<td>(I: 150 , \text{mV}; 200 , \text{mV}; 225 , \text{mV}; 333 , \text{mV}; 1 , \text{V}; 1.625 , \text{V}; 2 , \text{V}; 4 , \text{V})</td>
<td>according IEC 61850-9-2</td>
</tr>
<tr>
<td></td>
<td>(U_{\text{nom}}: 57.7 , (100) , \text{V}; 230 , (400) , \text{V}; 400 , (690) , \text{V})</td>
<td>(U: 200 , \text{mV}; 333 , \text{mV}; 1 , \text{V}; 1.625 , \text{V}; 2 , \text{V}; 3.25 , \text{V}; 4 , \text{V})</td>
<td></td>
</tr>
<tr>
<td>TOU revenue metering</td>
<td>in accordance with IEC 62052-11, IEC 62053-22, IEC 62053-23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy class (active / reactive)</td>
<td>0.2S / 0.5 or 0.5S / 1</td>
<td>0.5S / 1</td>
<td>0.2S / 0.5</td>
</tr>
<tr>
<td>Time of use (TOU) metering</td>
<td>programmable TOU records (255 seasons, 255 days, 8 tariff zones per day)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power loads profile</td>
<td>dayli — 366 records, monthly — 120 records</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>with configurable intervals (period from 1 s to 12 hours): profile 1 — 5094 records, profile 2 — 1536 records</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage of readings (total and TOU)</td>
<td>since reset, at the beginning and for the current day (previous 30 days), for the beginning and for the current month (12 previous months), for the beginning and for the current year (10 previous years); the duration of data storage — 20 years without external power supply</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power quality monitoring</td>
<td>in accordance with GOST 32144-2013, GOST 30804.4.7-2013 (class I), GOST R 8.655-2009, GOST R 51517.4.15-2012, GOST 33073-2014 (reports), EN 50160 (reports)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>in accordance with IEC 61000-4-30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measured parameters and accuracy</td>
<td>The parameters of three-phase power grid: RMS, 1...50 harmonics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurement accuracy</td>
<td>% Reading: voltage RMS (phase, line-to-line, average), and harmonics from 1 to 50: (\pm 0.1%,)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>currents (phase and average): (\pm 0.1%,)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>power (active, reactive, apparent): (\pm 0.5%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequency (\pm 0.01 , \text{Hz},)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>power factor (phase and average): (\pm 0.1 , ^*)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fault Recorder</td>
<td>recording of instantaneous values: three current, three voltage (phase or linear); sampling 7.2 kHz; configurable trigger; recording time — 10 seconds of pre-history + 60 seconds of event</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital signals</td>
<td>up to 64 processed signals; statuses of inputs and outputs of up to 4 external ENMV-1 modules, logical expressions, GOOSE subscriptions, diagnostic signals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extension modules</td>
<td>display modules: ENMI-4m, ENMI-4e, ENMI-7; digital inputs/outputs: up to 4 modules ENMV-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interfaces and protocols</td>
<td>2 × RS-485: Modbus RTU, IEC 60870-5-101, DLMS/COSEM USB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2(4) × 100Base-TX or 2 × 100Base-TX, 2 × 100Base-FX MM/SM (PRP, RSTP): IEC 61850 (ed. 2), IEC 60870-5-104, IEC 60870-5-101 (UDP), Modbus TCP, Modbus RTU, DLMS/COSEM, FTP, SNMP, web-console, RS-485 tunneling via TCP/IP; PRP, RSTP for 2/4 Ethernet ports modifications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power supply</td>
<td>18...36 VDC, 40...160 VDC, 120...370 VDC or 100...265 VAC (45...55 Hz), up to 12 VA (19 VA with ENMI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating conditions</td>
<td>(-40...+70 , ^\circ\text{C})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td>75 × 100 × 110 mm (IP40); transparent sealing cover; for ESM-ET and ESM-SV — lockable plug-out protection for RJ45 (RJ45PG) is optionally</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mounting</td>
<td>DIN-rail TH35 mounting</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ordering Information

Connection type
- HV — conventional CT and VT
- ET — electronic CT and VT
- SV — according IEC 61850-9-2

Rated input values
- ESM-HV — voltage phase (line)
 - 100 – 57.7 (100) V
 - 400 – 230 (400) V
 - 690 – 400 (690) V
- ESM-ET
 - current, V: 1 – 0.15, 2 – 0.2, 3 – 0.225, 4 – 0.333, 5 – 1.0, 6 – 1.625, 7 – 2, 9 – 4
 - voltage, V: 2 – 0.2, 4 – 0.333, 5 – 1.0, 6 – 1.625, 7 – 2.0, 8 – 3.25, 9 – 4
- TOU revenue metering and PQM
 - ESM-HV
 - 02A — energy class (active/reactive) 0.2S/0.5; PQM class A
 - 05A — energy class (active/reactive) 0.5S/1.0; PQM class A
 - ESM-ET
 - 05S — energy class (active/reactive) 0.5S/1.0; PQM class S
 - ESM-SV
 - 02A — energy class (active/reactive) 0.2S/0.5; PQM class A
- Interfaces
 - A2E2 — 2 × RS-485, 2 × 100Base-TX
 - A2E4 — 2 × RS-485, 4 × 100Base-TX
 - A2E2FX2 — 2 × RS-485, 2 × 100Base-TX, 2 × 100Base-FX MM
 - A2E2FS2 — 2 × RS-485, 2 × 100Base-TX, 2 × 100Base-FX SM

Power supply voltage
- 220 — 120...370 VDC or 100...265 VAC
- 110 — 40...160 VDC
- 24 — 18...36 VDC

Options and accessories
- IEC 61850-8-1 activation — ES61850.esm
- RS-485 splitter — EX...
- Surge protection devices for RS-485 — ESP485...
- Surge protection devices for Ethernet — ESP-LAN
- RJ45 plug lock-in and key — RJ45PG, RJ45PGK
- USB 2.0 cable, male A to male B, 1 m — USB-A-B

Certification
- Conformance to IEC 61850 – UCAiug Level A Certificate IEC 61850 Ed.2 (DNV GL)
- Conformance to LVS EN 61010-1:2011 (EN 61010-1:2010), EN 61000-4-3, EN 61000-4-4, EN 61000-4-5, EN 61000-4-6, EN 61000-4-8, EN 61000-4-11.
ENMU meets IEC 61869-13 stand-alone merging unit standard. In addition to measuring inputs, ENMU may have digital inputs and outputs. Additional features of ENMU are synchrophasor measurement and digital fault recording.

ENMU digitizes input current and voltage signals and publishes up to 4 streams of IEC 61850-9-2 sampled values (SV) to the process bus for protection and measurement. High sample rate streams can be used for energy metering and power quality monitoring by ESM smart meters.

ENMU synchronizes the data using IEEE 1588v2 PTP.

The modification with built-in digital inputs and outputs provides remote monitoring and control via IEC 61850-8-1 (MMS, GOOSE). The number of digital and analog signals processed can be increased by connecting external devices such as ENMV-1.

ENMU provides IEEE C37.118 phasor measurements.

ENMU records and stores fault oscillograms and phasor measurements.

Pairs of interfaces for publishing SV streams and communication via IEC 61850-8-1 (MMS, GOOSE) can operate in IEC 62439-3 PRP redundancy mode.
Specifications

Analog inputs / accuracy
- Voltage, 4 inputs: 2...200% U_\text{rated}(57.7 \text{ V}), 0.2%;
- Current measuring, 4 inputs: 1...200% I_\text{rated}(1/5 \text{ A}), 0.2%;
- Current protection, 3 inputs: 10...4000% I_\text{rated}(1/5 \text{ A}), 5%;
- IEC 61869-13: 0.2, 0.2DR5-200, 6TPM40, T_\text{p} = 120 \text{ ms}

Configurable sampled values
- 2 × SV80/96 (protection), 2 × SV256/288 (measuring)

Digital inputs
- 16 inputs: 220 VDC, adjustable thresholds;
- 6 inputs: 24 VDC

Digital outputs
- 6...12 × DO EMR, 3 × DO TRIP or DO SSR:
 - DO EMR — 400 VAC 6 A, 220 VDC 0.45 A, 6 ms
 - DO SSR — 400 VAC 1.35 A, 5 ms
 - DO TRIP — 250 VAC 10(40) A, 1 ms

Fault recorder
- sampling rate up to 14.4 kHz, 8 GB storage, FTP access

Interfaces and protocols
- USB + please see ordering information / IEC 61850-9-2, IEC 61850-8-1 (ed. 1),
 IEEE C37.118.2, IEC 60870-5-104, IEC 60870-5-101, IEEE 1588v2 PTP (time sync)

Power supply
- 120...370 VDC or 100...265 VAC (47...63 Hz), 30 VA

Operating conditions and design
- -40...+70 °C; 305 × 254 × 100 mm, IP20

Ordering Information

Rated values
- 1/100 — 1 A / 57.7(100) V
- 5/100 — 5 A / 57.7(100) V

Interfaces group 1
- E3 — 3 × 100Base-TX
- FX2E1 — 2 × 100Base-FX LC MM, 1 × 100Base-TX

Interfaces group 2
- not specified — none
- FX2E1A2C1 — 2 × 100Base-FX MM,
 1 × 100Base-TX, 2 × RS-485, 1 × CAN
- E3A2C1 — 3 × 100Base-TX, 2 × RS-485, 1 × CAN

Digital inputs/outputs
- not specified — none
- 6/2 — 6 DI 24 V, 2 DO EMR
- 16/8 — 16 DI 220 V, 5 DO EMR, 3 DO TRIP
- 16/10 — 16 DI 220 V, 7 DO EMR, 3 DO SSR
- 22/12 — 16 DI 220 V, 6 DI 24 V, 9 DO EMR, 3 DO SSR

2014/35/EU
2014/30/EU
ENMI display modules serve as HMI and visualize data provided by ENIP-2, ESM, and ENMV-1 devices.

Modifications of ENMI differ in display technologies, information presentation methods and forms, interfaces, and types of housing. One of the housing type has a special dock adapter and allows to combination of ENIP-2 or ESM with ENMI in a single construct.

One ENMI can poll multiple devices, as well as multiple ENMIs can be used to display data from one device (ENIP-2 or ESM).

A single RJ-45 patch cord is used for serial connection to the master device, and in the case of ENIP-2 or ESM, an additional power supply is not needed for operation.
ENMI-3

Seven-segment LED indicators, push-button controls, two sizes, RS-485 interface.

ENMI-6

Color touch-screen display for WAMS, diagnostics via SNMP, Ethernet 100Base-TX interface.

ENMI-7

Monochrome OLED display, push-button controls, RS-485 interface.
ENMI-4m, ENMI-4e

Color display, touch and push-button controls, RS-485 (ENMI-4m) or 100Base-TX (ENMI-4e) interface.

Modules are available in two mounting dimensions with two different display sizes (4.3” and 7”).

120 × 120 × 49 mm

146 × 226 × 55 mm
Specifications

<table>
<thead>
<tr>
<th>Type of display</th>
<th>ENMI-3-24-1</th>
<th>ENMI-3-24-2</th>
<th>ENMI-4m-24-2</th>
<th>ENMI-4e-24-2</th>
<th>ENMI-4m-220-4</th>
<th>ENMI-4e-220-4</th>
<th>ENMI-6-24-2</th>
<th>ENMI-7-24-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>seven-segment LED (3 lines of 4 digits)</td>
<td>TFT 4.3” 480 × 272, touch screen</td>
<td>TFT 4.3” 800 × 480, touch screen</td>
<td>OLED 2.42” 128 × 64, monochrome</td>
</tr>
<tr>
<td>Application</td>
<td>ENIP-2</td>
<td>ENIP-2, ESM</td>
<td>ENIP-2, ESM</td>
<td>Diagnostic panel</td>
<td>ENIP-2, ESM</td>
<td>ENIP-2, ESM</td>
<td>ENIP-2, ESM</td>
<td>ENIP-2, ESM</td>
</tr>
<tr>
<td>Interfaces and protocols</td>
<td>RS-485 (Modbus RTU)</td>
<td>RS-485, Modbus RTU (ENMI-4m) 100Base-TX, Modbus TCP (ENMI-4e)</td>
<td>100Base-TX, Modbus TCP, NTP</td>
<td>RS-485 Modbus RTU</td>
<td>ENMI-3-24-1, ENMI-4m-24-2</td>
<td>ENMI-4m-24-4</td>
<td>ENMI-4m-220-4</td>
<td>ENMI-4e-24-4</td>
</tr>
<tr>
<td>Power supply voltage</td>
<td>10...36 VDC, 10 W</td>
<td>10...36 VDC, 3 W</td>
<td>10...36 VDC, 120...370 VDC or 100...265 VAC (45...55 Hz), 10 W</td>
<td>10...36 VDC, 5 W</td>
<td>10...36 VDC, 2 W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating temperature</td>
<td>−40...+55 °C</td>
<td>−20...+55 °C</td>
<td>−20...+55 °C</td>
<td>−20...+55 °C</td>
<td>−40...+55 °C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design and mounting</td>
<td>96 × 96 × 86 mm (ENMI-3-24-1), 120 × 120 × 49 mm (ENMI-3-24-2)</td>
<td>120 × 120 × 49 mm</td>
<td>146 × 226 × 55 mm</td>
<td>120 × 120 × 49 mm</td>
<td>96 × 96 × 86 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ordering Information

<table>
<thead>
<tr>
<th>Housing type</th>
<th>ENMI-3</th>
<th>ENMI-4m, ENMI-4e</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>96 × 96 × 86 mm</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>120 × 120 × 49 mm</td>
<td></td>
</tr>
<tr>
<td>2D</td>
<td>120 × 120 × 49 mm, with dock-adaptor</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>146 × 226 × 55 mm</td>
<td></td>
</tr>
</tbody>
</table>

Display type, interface

<table>
<thead>
<tr>
<th>Display type, interface</th>
<th>Power supply voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>LED, RS-485</td>
</tr>
<tr>
<td>4m</td>
<td>touch screen TFT LCD, RS-485</td>
</tr>
<tr>
<td>4e</td>
<td>touch screen TFT LCD, 100Base-TX</td>
</tr>
<tr>
<td>6</td>
<td>touch screen TFT LCD, 100Base-TX</td>
</tr>
<tr>
<td>7</td>
<td>OLED, RS-485</td>
</tr>
</tbody>
</table>

| 24 | 10...36 VDC (all housing types) |
| 220 | 220 VDC or 230 VAC (only type 4) |

Options and accessories

- Straight patch cord RJ45-RJ45 – CCR...
- RS-485 splitter – EXS5RX
- IP54 for front panel – IP54.enmi
- Bracket organizer – P-KP, PDIN-KP
- USB 2.0 cable, male A to male B, 1 m – USB-A-B
ENMV provides digital input-output and analog input for automated systems of power grids or industrial facilities. The input-output modules operate independently or in conjunction with the ENIP-2 and ESM measuring devices, supplementing their functionality.

The series includes:
- ENMV-1 – digital input-output modules, analog input modules;
- ENMV-1W – 1-Wire modules;
- ENMV-3 – DC analog input modules for WAMS.

ENMV-1 digital inputs are protected from electromagnetic interference, and both wet and dry contacts are supported. Digital outputs execute control commands and can be activated by programmable logic.

ENMV-1W polls sensors connected to a 1-Wire bus, providing environmental conditions data.

ENMV-3 measures direct voltage and current in generator excitation circuits at power plants, and integrates into WAMS supplementing phasor measurement data.
ENMV-1 with four interfaces

- 2 × RS-485, 2 × 100Base-TX
- digital input and output, analog input, temperature

![ENMV-1 digital input module](image)

Specifications

<table>
<thead>
<tr>
<th>ENMV-1-</th>
<th>24/0</th>
<th>16/3R</th>
<th>16/6</th>
<th>0/20</th>
<th>0/22</th>
<th>8X8/0</th>
<th>8P2T/0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of digital inputs</td>
<td>24</td>
<td>16</td>
<td>16</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>(dry/wet contacts: 24/110/220 VDC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of digital outputs</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>20</td>
<td>20</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>300 VDC/0.12 A, 250 VAC/0.12 A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of digital outputs</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>250 VDC/3.4 A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of digital outputs</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>250 VAC/8 A, 250 VDC/0.2 A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of analog inputs</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>±250 V, ±10 V, ±200 mV, ±75 mV, ±20 mA, ±5 mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of analog inputs</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>0…20 mA, ±20 mA, 0…5 mA, ±5 mA, 4…20 mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of thermocouples type K, thermal resistance Pt</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

Interfaces and protocols
- 2 × RS-485: Modbus RTU, IEC 60870-5-101
- 1(2) × 100Base-TX (RSTP, PRP): IEC 61850 (ed. 2), IEC 60870-5-104, Modbus TCP, RS-TCP, SNMP

Event logging
- I/O history — 1000 records

Time sync
- IEC 60870-5-101, IEC 60870-5-104, SNTP

Power supply
- 18…36 VDC, 40…160 VDC, 120…370 VDC, 100…265 VAC (45…55 Hz), 12 VA

Operating conditions
- -40…+70 °C

Design
- 75 × 100 × 110 mm, IP40

Mounting
- DIN-rail TH35 mounting
ENMV-1 with three interfaces

- 1 × RS-485, 2 × 100Base-FX or 1 × 100Base-TX
- digital input and output, analog input

Specifications

<table>
<thead>
<tr>
<th>ENMV-1</th>
<th>8/3R</th>
<th>8/6</th>
<th>16/0</th>
<th>0/18</th>
<th>8P/0</th>
<th>8X/0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of digital inputs (dry/wet contacts: 24/110/220 VDC)</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Number of digital outputs 300 VDC/0.12 A, 250 VAC/0.12 A</td>
<td>-</td>
<td>6</td>
<td>-</td>
<td>18</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Number of digital outputs 250 VAC/8 A, 250 VDC/0.2 A</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Number of analog inputs 0...20 mA, ±20 mA, 0...5 mA, ±5 mA, 4...20 mA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>Number of analog inputs ±250 V, ±10 V, ±200 mV, ±75 mV, ±20 mA, ±5 mA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8</td>
</tr>
</tbody>
</table>

Interfaces and protocols

- 1 × RS-485: Modbus RTU, IEC 60870-5-101
- 1 × 100Base-TX or 2 × 100Base-FX MM/SM (PRP, RSTP): IEC 61850 (ed. 2), IEC 60870-5-104, Modbus TCP, RS-TCP, SNMP

Event logging

- I/O history – 1000 records

Time sync

- IEC 60870-5-101, IEC 60870-5-104, SNTP

Power supply

- 18...36 VDC, 40...60 VDC, 120...370 VDC, 100...265 VAC (45...55 Hz), 12 VA

Operating conditions

- -40...+70 °C

Design

- 75 × 100 × 110 mm, IP40

Mounting

- DIN-rail TH35 mounting
Inputs/outputs

- 1 × RS-485
- digital input and output, analog input

Specifications

<table>
<thead>
<tr>
<th>ENMV-1</th>
<th>32/0</th>
<th>24/6</th>
<th>16/12</th>
<th>16/18</th>
<th>8/24</th>
<th>0/36</th>
<th>16P/0</th>
<th>6/3R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of digital inputs (dry/wet contacts: 24/110/220 VDC)</td>
<td>32</td>
<td>24</td>
<td>16</td>
<td>16</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>Number of digital outputs 300 VDC/0.12 A, 250 VAC/0.12 A</td>
<td>-</td>
<td>6</td>
<td>12</td>
<td>18</td>
<td>24</td>
<td>36</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Number of digital outputs 250 VAC/8 A, 250 VDC/0.2 A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Number of analog inputs 0...20 mA, ±20 mA, 0...5 mA, ±5 mA, 4...20 mA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>16</td>
<td>-</td>
</tr>
</tbody>
</table>

Interfaces and protocols

- 1 × RS-485: Modbus RTU, IEC 60870-5-101
- Event logging
 - I/O history – 1000 records
- Time sync
 - IEC 60870-5-101
- Power supply
 - 18...36 VDC, 40...160 VDC, 12 W
- Operating conditions
 - -40...+70 °C
- Design
 - 75 × 100 × 124 mm (6/3R – 75 × 70 × 110 mm), IP40
- Mounting
 - DIN-rail TH35 mounting
Specifications

ENMV-1W
- 2 × RS-485
- Environmental monitoring, digital outputs

Inputs
1-Wire bus, poll up to 30 1-wire sensors (temperature, humidity and pressure)

Outputs
2 digital outputs:
- 300 VDC/0.12 A, 250 VAC/0.12 A

Interfaces and protocols
2 × RS-485:
- Modbus RTU, IEC 60870-5-101

Time sync
IEC 60870-5-101

Power supply
18...36 VDC, 120...370 VDC, 100...265 VAC (45...55 Hz), 4 VA

Operating conditions
-40...+70 °C

Design
75 × 70 × 110 mm, IP40

Mounting
DIN-rail TH35 mounting

ENMV-3
- 2 × 100Base-TX
- DC circuit measurement

Inputs
2 measuring inputs
(FS: ±0.1 %):
- Input A1: 10 V, 1000 V
- Input A2: 5 mA, 20 mA, 75 mV, 200 mV, 10 V

Outputs
- 2 digital outputs:
 - 300 VDC/0.12 A, 250 VAC/0.12 A

Interfaces and protocols
2 × 100Base-TX (PRP, RSTP):
- IEEE C37.118.2, IEC 60870-5-104, IEC 60870-5-101, SNMP

Time sync
IEC 60870-5-101

Power supply
18...36 VDC, 120...370 VDC, 100...265 VAC (45...55 Hz), 10 VA

Operating conditions
-40...+70 °C

Design
109 × 188 × 35 mm, IP20

Mounting
DIN-rail TH35 mounting
Ordering Information

Designations: DI — digital inputs, X 1 — DI voltage: 24 — 24 VDC (wet/dry), 110 — 110 VDC (wet), 220 — 220 VDC (wet); DO EMR — digital outputs 250 VAC 8 A, 250 VDC 0.2 A; DO SSR — digital outputs 300 VDC 0.12 A, 250 VAC 0.12 A; DO TRIP — digital outputs 250 VDC 3.4 A;
AI — analog inputs, X 2 — AI input range: A — ±250 V, B — ±10 V, C — ±200 mV, D — ±75 mV, E — ±20 mA, F — ±5 mA;
AIP — configurable analog input: 0(4)...20 mA, ±20 mA, 0...5 mA, ±5 mA; TP — inputs for thermocouples and thermal resistance.

Power supply voltage
220 — 120...370 VDC or 100...265 VAC
110 — 40...160 VDC
24 — 18...36 VDC

Options and accessories
IEC 61850-8-1 activation — ES61850.enmv
Detachable terminal (except 1W, 6/3R) — PLUG.enmv
RS-485 splitter — EX...
Surge protection — ESP485-..., ESP-LAN
Sealing cover — PC1015, PC0715
1-Wire sensors — TS-1W-55/70, HPTS-1W-5
Rain, wind and solar radiation protection screen — TS-SRS2
USB 2.0 cable — USB-A-B, USB-A-Bmini
ENLZ
short-circuit and earth fault controllers

ENLZ devices are used for the localization of short circuits and earth faults in cable distribution power grids. ENLZ in pair with the sensors detects short circuits and measures synchrophasor of zero-sequence currents and voltages. ENLZ transmits data for centralized processing to the control center of DSO.

The algorithm for the localization of earth faults is based on the analysis of the amplitudes and phases of the zero-sequence current and voltage phasors, measured by ENLZ at section boundaries of the distribution network.

Equipped with six optical inputs for short-circuit sensors, and two analog inputs, one ENLZ provides monitoring data for two cable lines. To measure $3I_0$ and $3U_0$, ENLZ connects to zero-sequence current transformer (SCSS), and instrument voltage transformer with $3U_0$ winding through a VMT step-down voltage transformer.

ENLZ uses ENCM-3 remote terminal unit for time synchronization from GPS/GLONASS. ENCM-3 transmits data from ENLZ to a data processing center via Ethernet or cellular network (4G/3G/2G).

When a short circuit occurs in one of the monitored bays, ENLZ devices receive and time-record signals from short-circuit current indicators (OCTT). Recorded events are sent to the SCADA data collection server via the data collection device as telemetering. ES Graph software analyzes $3I_0$ synchrophasors at the time of damage in the monitored network. By comparing the signals from pairs of SCSS sensors at the beginning and end of the cable line, the damaged network section is determined.
Specifications

Analog inputs
current: 0.5...70 A (through SCSS current sensor)
voltage: 2...200 V (through VMT voltage transformer)

Optic inputs
6 optic inputs, POF 980/1000 mkm, wavelength 400...1000 nm, d = 2.2 mm

Interfaces and protocols
RS-485: IEC 60870-5-101

Power supply
18...36 VDC or 120...370 VDC / 100...265 VAC (45...55 Hz), 6 VA

Operating conditions and design
from -40 to +70 °C, 75 × 100 × 120 mm (IP40), DIN-rail TH35 mounting

Ordering Information

ENLZ-1-□/6-□-A1

Analog inputs
I2 – two current inputs
U2 – two voltage inputs
I1U1 – current input + voltage input

Power supply voltage
220 – 100...265 VAC (45...55 Hz) or 120...370 VDC
24 – 18...36 VDC

Options and accessories

RS-485 splitter – EX...
Threshold current sensor with optical output – OCTT
Summation current sensor, splittable – SCSS
Plastic optical fiber – CPOF
Voltage transformer – VMT
USB 2.0 cable, male A to male B mini, 1 m – USB-A-Bmini
Receiving GPS/GLONASS time signals, ENCS-2 serves as a common time source for measuring devices, smart meters, I/O modules, phasor measurement units, merging units, servers and workstations.

ENCS-2 supports multiple time synchronization protocols and interfaces (RS-232, RS-485, and Ethernet). For devices connected to the process bus of the digital substation, ENCS-2 provides synchronization via PTPv2 in accordance with IEC/IEEE 61850-9-3, Power Utility Profile.

ENCS-2 has an OLED display and control buttons on its front panel, a set of interfaces, and a PPS output.

ENCS-2 operates in pair with GPS/GLONASS antenna, which is ordered separately. GPS-P antenna with cable and suitable mounting brackets are presented on page 47.
Specifications

Timing accuracy (UTC) 1PPS and IRIG: ±150 ns; SNTP: ±100 mcs; PTPv2: ±250 ns

Timing error in the absence of satellites ENCS-2: ±20 ms/day
ENCS-2T: ±1 ms/day

Interfaces and protocols 2 × 100Base-TX (PRP or 2 MAC): PTPv2 (IEC/IEEE 61850-9-3), SNTP, SNMP; RS-232-1, RS-485-1: NMEA 0183, IEC 60870-5-101; RS-485-2: IRIG-A(B), 1PPS

Event logging Timing functions: satellites signal receiving statuses, ports statuses, clock correction, PTP correction, BMCA operation
Common events: power up, firmware update, changing settings, authorization

Power supply 18...36 VDC, 55...176 VDC, or 120...370 VDC / 100...265 VAC (45...55 Hz), 10 VA

Operating conditions and design –40...+70 °C, 85 × 100 × 110 mm, IP40, DIN-rail TH35 mounting

Ordering Information

ENCS-2-□-□-A2B1E2

Modification
not specified — with crystal oscillator
T — with oven controlled crystal oscillator (OCXO)

Power supply voltage
220 — 100...265 VAC (45...55 Hz) or 120...370 VDC
110 — 55...160 VDC
24 — 18...36 VDC

Options and accessories

IEEE 1588v2 PTP support — PTPv2.encs2
Outdoor GPS/GLONASS antenna — GPS-P
Mounting brackets for GPS/GLONASS antenna — GPS-KP...
ENCS-3m and ENCM-3 remote terminal units (RTUs) provide a data communication channel between power facilities and control centers.

ENCM-3 is equipped with four interfaces, digital and analog inputs and outputs, and is used for automation of 6-20 kV substations and switchgear in distribution networks.

ENCS-3m are equipped with up to 14 interfaces and are used in automation systems of power plants and substations.

The RTUs function in real-time, acquiring data from up to 240 devices via RS-485, RS-232, and Ethernet interfaces. Collected data is aggregated and transmitted to automation systems with minimal delays.

The RTUs can be configured to perform logic operations and arithmetic calculations with the values collected.

Multiple proprietary and standard communication protocols are supported, including IEC 61850-8-1 (client/server, MMS/GOOSE). The RTUs act as protocol converters, and by demand can tunnel serial interfaces, providing direct access to devices connected to their RS-232/485 ports.

Modifications with a built-in GPS/GLONASS receiver and a 3G/2G module are available.
ENCS-3m

Remote terminal unit has ten asynchronous serial ports, and two or four Ethernet ports with support for RSTP and PRP redundancy according to IEC 62439-3. To be compatible with low-speed data links, some ports can be configured to exchange at 100 baud.

ENCS-3m...-1(2)

This modification is distinguished by the presence of a CAN, which is used for the “warm” standby mode. It can be ordered with options:

G – 4G/3G/2G module;
GT – ... + GPS/GLONASS module.

ENCS-3m...-3, ENCS-3m...-4(5)

Four Ethernet ports supporting RSTP and PRP redundancy in accordance with IEC 62439-3.
ENCM-3

Remote terminal unit is equipped with three serial ports and one Ethernet port.

ENCM-3...-000

It is the basic modification has no additional inputs and outputs.

ENCM-3...-430

4 digital inputs; 3 digital outputs 3/0.35/0.2 A (30/110/220 VDC), 6 A (250 VAC).

ENCM-3...-000

It is the basic modification has no additional inputs and outputs.

ENCM-3 supports data transmission in cellular networks and receives GPS/GLONASS signals.

ENCM-3...-400(800)

4(8) digital inputs

ENCM-3...-421(422)

1(2) analog inputs, 4 digital inputs, 2 digital outputs (3/0.2 A 30/220 VDC, 6 A 250 VAC)

ENCM-3...-000

It is the basic modification has no additional inputs and outputs.

ENCM-3...-430

4 digital inputs; 3 digital outputs 3/0.35/0.2 A (30/110/220 VDC), 6 A (250 VAC).

ENCM-3...-000

It is the basic modification has no additional inputs and outputs.

ENCM-3 supports data transmission in cellular networks and receives GPS/GLONASS signals.

ENCM-3...-400(800)

4(8) digital inputs

ENCM-3...-421(422)

1(2) analog inputs, 4 digital inputs, 2 digital outputs (3/0.2 A 30/220 VDC, 6 A 250 VAC)
Optionally, a super boost capacitor power buffer is available for all modifications of ENCM-3,

ENCM-3...-640

6 digital inputs; 4 digital outputs (0.1 A 300 VDC / 250 VAC).

ENCM-3...-1242

12 digital inputs, 3 digital outputs (8 A 250 VAC, 0.2 A 250 VDC), input for NTC resistance sensors, PWM output (24 VDC, 250 W) for engine control (soft start, straight/reverse).

ENCM-3...-612

6 digital inputs, input for NTC resistance sensors, PWM output (24 VDC, 250 W) for engine control (smooth start, straight/reverse)

6 digital inputs

6 digital inputs, input for NTC resistance sensors, PWM output (24 VDC, 250 W) for engine control (smooth start, straight/reverse)

6 digital inputs, input for NTC resistance sensors, PWM output (24 VDC, 250 W) for engine control (smooth start, straight/reverse)
Specifications

<table>
<thead>
<tr>
<th>ENCS-3m...-1(2)</th>
<th>ENCS-3m...-3</th>
<th>ENCS-3m...-4(5)</th>
<th>ENCM-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interfaces</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6(8) × RS-485,</td>
<td>8 × RS-485, 2</td>
<td>8 × RS-485, 2</td>
<td>2(3) ×</td>
</tr>
<tr>
<td>4(2) × RS-232,</td>
<td>× RS-232, 4</td>
<td>× RS-232, 2</td>
<td>× RS-485,</td>
</tr>
<tr>
<td>2 × 100Base-TX</td>
<td>× 100Base-TX</td>
<td>× 100Base-TX,</td>
<td>10(0) ×</td>
</tr>
<tr>
<td>(PRP, RSTP),</td>
<td>(PRP, RSTP)</td>
<td>2 × 100Base-TX,</td>
<td>× RS-232,</td>
</tr>
<tr>
<td>CAN</td>
<td></td>
<td>2 × 100Base-TX,</td>
<td>1 × 100Base-TX</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CAN SM</td>
<td></td>
</tr>
<tr>
<td>Cellular</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3G (option G)</td>
<td>n/a</td>
<td>n/a</td>
<td>3G, 1 sim (option G)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4G, 2 sim (option GT)</td>
</tr>
<tr>
<td>Built-in GPS-receiver</td>
<td></td>
<td></td>
<td>available (option GT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data polling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>up to 240 devices</td>
<td>up to 240 devices</td>
<td>up to 240 devices</td>
<td>up to 64 devices</td>
</tr>
<tr>
<td></td>
<td>up to 240 devices</td>
<td>up to 240 devices</td>
<td></td>
</tr>
<tr>
<td></td>
<td>up to 240 devices</td>
<td>up to 240 devices</td>
<td></td>
</tr>
<tr>
<td></td>
<td>up to 240 devices</td>
<td>up to 240 devices</td>
<td></td>
</tr>
<tr>
<td></td>
<td>up to 8192 measurement values, 4096 digital signals, 2048 commands</td>
<td>up to 8192 measurement values, 4096 digital signals, 2048 commands</td>
<td></td>
</tr>
<tr>
<td></td>
<td>up to 16 connections Ethernet and 3G/2G: IEC 60870-5-104, IEC 61850 (MMS, GOOSE), Modbus TCP, SNMP</td>
<td>up to 16 connections Ethernet: IEC 60870-5-104, IEC 61850 (MMS, GOOSE), Modbus TCP, SNMP</td>
<td>up to 14 connections Ethernet and 4G/3G/2G: IEC 60870-5-104, IEC 61850 (MMS, GOOSE), Modbus TCP, SNMP</td>
</tr>
<tr>
<td>Built-in inputs and outputs</td>
<td>n/a</td>
<td>n/a</td>
<td>see ENCM-3 ordering information</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Event logging</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>status of digital inputs and outputs, diagnostic messages; software upgrade, configuration update, power supply events</td>
<td>status of digital inputs and outputs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time sync</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>according to IEC 60870-5-101, IEC 60870-5-104, SNTP (client and server)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logical expressions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>logical functions: AND, OR, XOR, CMP, RS FF, TIMER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power supply</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18...36 VDC, 42...176 VDC, 120...370 VDC or 100...265 VAC (45...55 Hz), 10 VA</td>
<td>18...36 VDC, 40...160 VDC, 120...370 VDC or 100...265 VAC (45...55 Hz), 10 VA</td>
<td>18...36 VDC, 40...160 VDC, 120...370 VDC or 100...265 VAC (45...55 Hz), 10 VA</td>
<td>10(18)...36 VDC, 55...176 VDC, 120...370 VDC, 100...265 VAC (45...55 Hz), 15 VA</td>
</tr>
<tr>
<td></td>
<td>Power buffer — optional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating conditions</td>
<td>-40...+70 °C</td>
<td>-40...+70 °C</td>
<td>-40...+70 °C</td>
</tr>
<tr>
<td>Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75(83) × 100 × 110 mm, IP40</td>
<td>75 × 100 × 110 mm, IP40</td>
<td>75 × 100 × 110 mm, IP40</td>
<td>75 × 70 × 110 (119) mm, 75 × 100 × 110 (119) mm, 75 × 170 × 110 (119) mm, IP40</td>
</tr>
<tr>
<td>Mounting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIN-rail TH35 mounting</td>
<td>DIN-rail TH35 mounting</td>
<td>DIN-rail TH35 mounting</td>
<td>DIN-rail TH35 mounting</td>
</tr>
</tbody>
</table>
Ordering Information

IEC 61850-8-1 activation for ENCS-3m — ES61850.encs3
IEC 61850-8-1 activation for ENCM-3 — ES61850.encm3
RS-485 splitter — EX...
Surge protection devices for RS-485 — ESP485...

Power supply voltage
24 — 18...36 VDC
110 — 42...160 VDC
220 — 120...370 VDC or 100...265 VAC

Interfaces
1 — 6 × RS-485, 4 × RS-232, 2 × 100Base-TX
2 — 8 × RS-485, 2 × RS-232, 2 × 100Base-TX
3 — 8 × RS-485, 2 × RS-232, 4 × 100Base-TX
4 — 8 × RS-485, 2 × RS-232, 2 × 100Base-TX, 2 × 100Base-FX SM
5 — 8 × RS-485, 2 × RS-232, 2 × 100Base-TX, 2 × 100Base-FX MM

ENCS-3m...-1(2) optional:
G — 3G/2G
GT — 3G/2G, GPS/GLONASS

ENCM-3...

Optional
G — 3G, 1 sim
T — GPS/GLONASS
GT — 4G, 2 sim, GPS/GLONASS

Power supply voltage
220 — 120...370 VDC or 100...265 VAC
110 — 55...176 VDC
24 — 10...36 VDC

Power buffer
- — NA
C — super boost capacitor power buffer

Interfaces
A2B1E1 — 2 × RS-485, 1 × RS-232, 1 × 100Base-TX
A3E1 — 3 × RS-485, 1 × 100Base-TX

Inputs and outputs
000 — NA
400 — 4 × DI dry contact
800 — 8 × DI dry contact
430 — 4 × DI dry contact, 3 × DO EMR
640 — 6 × DI wet contact (24 VDC), 4 × DO SSR
421 — 4 × DI dry contact, 2 × DO EMR, 1 × AI ±20 mA
422 — 4 × DI dry contact, 2 × DO EMR, 2 × AI 0...20 mA
612 — 6 × DI wet contact (24 VDC), 1 × AI NTC 10 kOhm, PWM (24 VDC, 250 W)
1242 — 12 × DI wet/dry contact (24 VDC), 3 × DO EMR, 1 × AI NTC 10 kOhm, PWM (24 VDC, 250 W)

Note:
Modifications ENCM-3...612, 1242 are available only with power supply 24 VDC (18...36 VDC)

Options and accessories

IEC 61850-8-1 activation for ENCS-3m
IEC 61850-8-1 activation for ENCM-3
RS-485 splitter
Surge protection devices for RS-485

Surge protection devices for Ethernet
Outdoor GPS/GLONASS antenna
Mounting brackets for GPS/GLONASS antenna
4G/3G/2G antenna

Certification

Conformance to IEC 61850 – UCAiug Level A Certificate IEC 61850 Ed.2 (DNV GL)
WAMS

synchrophasors acquisition
and real-time data analysis

Wide Area Measurement System (WAMS) uses measurements of voltage and current synchrophasors and provides state assessment and dynamic properties of power systems. WAMS data allows power system operators to identify power system conditions and monitor its dynamics. Real-time data provide an instantaneous overview of the power system, allowing the operator to detect the abnormal conditions and to determine their source.

To build the best performance WAMS it is necessary to cover main power facilities such as power stations and substations and equip them with phasor measurement units (PMU ENIP-2, see page 8), phasor data concentrators (PDC ES-PDC), and timing systems for global synchronization (ENC-2).

Phasor data concentrators are installed at power plants to collect data from phasor measurement units and stream it to data processing centers. ES-PDC is software running on rugged industrial PCs.

ES-PDC supports data exchange via IEEE C37.118.2, calculates the values of additional electrical quantities on the fly, and records cyclic and emergency archives of a configurable depth.

ES Phasor is a data analysis software for information that arrives at WAMS data centers. ES Phasor provides low-frequency oscillation monitoring and detects their sources.

ES Phasor analyses both online and offline data. Online analysis provides high process performance with a given accuracy. More detailed research is carried out by analyzing offline data.

The analysis of WASM data requires a large amount of computing, and with ES Phasor software the process is rationalized: the plan of computation is presented in the form of a generalized scheme and formed at the level of the user, and then assigned «performers» for each stage. By this scaling of computing resources, the software performs fast processing of WAMS data.
ES-PDC

Phasor Data Concentrator software

Ordering Information

ES-PDC-

Storage:
1000 — 1 TB for 10 × PMU
2000 — 2 TB for 20 × PMU

ES Phasor

Software for synchrophasor data analysis

ES-PDC is certified to the requirements of the Russian Power System Operator
CABINETS

typical and customized cabinets for automation systems

The application of typical cabinets allows to reduce the time of design, installation, and commissioning of automated systems.

Typical cabinets include microprocessor devices presented in this catalog, as well as proven third-party components.

Typical and customized cabinets assembled at our factory meet the requirements for safety and electromagnetic compatibility at power facilities.
Ordering Information

Set of signals processed
- \(P_{ix} \) — number (x) of measuring devices (ENIP-2, ESM, etc)
- \(D_{Px} \) — number (x) of display modules
- \(D_{lx}(24) \) — number (x) of digital inputs 24 VDC
- \(D_{lx}(220) \) — number (x) of digital inputs 220 VDC
- \(D_{Ox} \) — number (x) of digital outputs (300 VDC/0.12 A, 250 VAC/0.12 A)
- \(D_{ORx} \) — number (x) of digital outputs (220 VAC/6 A, 220 VDC/0.1 A)
- \(A_{lx} \) — number (x) of analog inputs
- \(T_{x} \) — number (x) of temperature sensors

Interfaces
- \(A_{x} \) — number (x) of RS-485
- \(B_{x} \) — number (x) of RS-232
- \(E_{x} \) — number (x) of Ethernet 100Base-TX
- \(F_{x} \) — number (x) of Ethernet 100Base-FX
- \(G_{1} \) — cellular 3G, 1 sim
- \(G_{2} \) — cellular 4G, 2 sim
- \(G_{R} \) — 3G/4G router
- \(T_{1} \) — RTU with GPS/GLONASS support
- \(T_{2} \) — cabinet equipped with ENCS-2 (GPS/GLONASS)
- \(R \) — redundancy RTU

Operating conditions and design
- \(X_{Y} \) — specify climate conditions and required IP

Power supply
- DC24 — 24 VDC
- AC230 — 230 VAC
- DC220 — 220 VDC
- UPS — with UPS
- \(x_{2} \) — two power feeding

Example of a combined code for power supply:
- DC220AC230UPS — 220 VDC, 230 VAC, UPS
- AC230UPS — 230 VAC, UPS
- AC230x2UPS — two power feeding 230 VAC, UPS
- DC24x2 — two power feeding 24 VDC
Typical cabinets

Data acquisition and transmission

ENTM-1.0

Data acquisition and transmission, centralized I/O

ENTM-1.1

Centralized I/O

ENTM-2.1(2.2)

ENTM-1.2

ENCM-3...-800

8 × DI 24 VDC

2 × RS-485, 1 × RS-232, 1 × 100Base-TX, cellular

100...265 VAC, 10 VA (without external load)

IP54

500 × 400 × 220 mm

ENCM-3...-430

27 × DI 24 VDC (ENTM-1.1)

1 × ENMV-1-24/0 (ENTM-1.1)

3 × ENMV-1-24/0 (ENTM-1.2)

2 × 100...265 VAC, up to 150 VA (without external load)

IP54

600 × 600 × 250 mm (ENTM-1.1)

100...265 VAC, up to 720 VA

IP54

2200 × 800 × 600 mm

ENTM-1.2

20 × ENMV-1-24/0 (ENTM-2.1)

220 VDC, 2 A power module (ENTM-2.1)

16 × ENMV-1-0/20 (ENTM-2.2)

2 × 100...265 VAC, up to 340 VA

IP54

600 × 600 × 250 mm (ENTM-1.5), 2200 × 800 × 600 mm (ENTM-2.5)
Data acquisition and transmission

Centralized I/O

Measurements

- ENTM-2.3
- ENTM-2.4
- ENTM-1.5(2.5)

WAMS

- 20 × ENIP-2 + ENMI-3
- measurements for 20 feeders/bays
- 158 × DI 24 VDC
- 2 × RS-485
- 100Base-TX
- 2 × 100...265 VAC, up to 440 VA
- IP54
- 2200 × 800 × 600 mm

- 4 × PMU ENIP-2
- 2 × ES-PDC
- ENCS-2
- ENMI-6
- PMU for 4 feeders/bays
- 18 × DI 24 VDC
- 2 × 100Base-FX (SM, SC)
- 1 × GPS/GLONASS
- 2 × 100...265 VAC, UPS 1000 VA, up to 340 VA
- IP54
- 2200 × 800 × 600 mm

Time sync

- 2 × ENCS-2
- 2 × switch L2
- ENMI-6
- GPS/GLONASS
- 4 × RS-485, 2 × RS-232
- 2 × 100Base-TX
- 2 × 100Base-FX SC SM
- 2 × 100...265 VAC, up to 55 VA
- IP54
- 2200 × 800 × 600 mm
- 600 × 600 × 250 mm (ENTM-1.5),
 2200 × 800 × 600 mm (ENTM-2.5)
Options and Accessories

Expand the capabilities of devices and simplify their maintenance with options and accessories.

The full list is on enip2.com.
IEC 61850

- **ES61850.encs3**
 IEC 61850-8-1 activation for ENCS-3m

- **ES61850.encm3**
 IEC 61850-8-1 activation for ENCM-3

- **ES61850.enip**
 IEC 61850-8-1 activation for ENIP-2 Standard

- **ES61850.esm**
 IEC 61850-8-1 activation for ESM

- **ES61850.enmv**
 IEC 61850-8-1 activation for ENMV-1

- **PTPv2.encs2**
 IEEE 1588v2 PTP activation for ENCS-2

IP54.enmi
IP54 for front panel of ENMI

RM6-KP
Bracket for ENIP-2...-32, stainless steel 1.5 mm

PLUG.enmv
Detachable terminal for ENMV-1 (except 1W, 6/3R)

SD8G.pmu
Additional 8 GB memory for PMU ENIP-2

PC1015, PC0715
Sealing cover for ENIP-2 Standard or ENMV-1

P-KP
Bracket organizer for ENIP-2 Panel or ENMI for panel mounting

PDIN-KP
Bracket organizer for mounting of ENIP-2 Panel, ENMI on DIN-rail TH35

PXT-KP
Bracket organizer with terminals for ENIP-2 Panel for transiting/terminating current wires
EX3TBS
RS-485 splitter for 3 connections (IP54, screw)

EX4TB
RS-485 splitter for 4 connections (screw, DIN-rail TH35)

EX4(6)RJ(S), EX5RX, EX6RJT
RS-485 splitter for 4, 5 or 6 connections (RJ45, screw/push-in, DIN-rail TH35)

ESP485‑1, ESP485‑2
Surge protection for RS-485, 1 or 2 line (screw, DIN-rail TH35)

ESP485‑SG, ESP485‑SG2
Surge protection for RS-485 line with protection of signal ground (RJ45, screw/push-in, DIN-rail TH35)

TR120RJ
RS-485 Terminator (RJ45, 120 Ohm)

ESP-LAN
Surge protection for Ethernet 10/100/1000 Base-TX (RJ45, screw/push-in, DIN-rail TH35)

EMP-GN
Surge protection for GPS/GLONASS antenna feeder (DIN-rail TH35)

ITS2
Non-contact temperature sensor (RJ45, DIN-rail TH35)

TS-1W-55/70-5 (TS-1W-55/125-5)
1-Wire temperature sensors −55...+70 °C (−55...+125 °C), 5 m

HPTS-1W-5
1-Wire humidity, pressure and temperature sensor, 5 m

TS-SRS2
Rain, wind and solar radiation protection screen for 1-Wire sensors
GPS-P
Outdoor GPS/GLONASS-antenna, D111 mm, h50 mm, G3/4, SMA (m), 10/20/50 m feeder

4G.S3
4G/3G/2G antenna SMA connector, 3 m feeder, screw fastening

4G.M3
4G/3G/2G antenna SMA connector, 3 m feeder, magnetic base

GPS-KP-LITE
Mounting bracket for GPS/GLONASS antenna, stainless steel, 83 × 60 × 82 mm

GPS-KP-MINI
Mounting bracket for GPS/GLONASS antenna, stainless steel, 125 × 60 × 186 mm

GPS-KP
Mounting bracket for GPS/GLONASS antenna, painted steel, h × 300 mm × G3/4, h 300, 500 or 1000 mm

SCSS
Summation current sensor, splittable

OCTT, CPOF
Threshold current sensor with optical output, plastic optical fiber

VMT
Voltage transformer for connecting ENLZ to VT

CCRJ05, CCRJ10, CCRJ30
Straight patch-cord RJ45-RJ45, length 0.5/1.0/3.0 m

RJ45PG, RJ45PGK
Lockable plug-out protection for RJ45 connector, key for RJ45PG

USB-A-B, USB-A-Bmini
USB 2.0 cable, male A to male B (male B mini), 1 m
More than 200,000 ENS devices already operate at thousands of power facilities. Our customers are satisfied with the experience of using them. If you are searching for reliable and effective solutions then take a look at some examples of applications for automation systems:

- remote monitoring and control of distribution networks;
- power station and substation automation;
- digital substations and smart grids;
- smart metering and power quality monitoring;
- wide area measurement and control systems.

It doesn’t matter if you are building a new or if you are retrofitting an existing automation system — supporting the standard industrial protocols and simplicity of configuration make it easy to integrate our products into projects and systems with any complexity.
Remote monitoring and control of distribution networks

Monitoring and control of small power facilities

ENCM-3 processes a part of the data amount by built-in digital inputs and analog inputs and also gives controls through built-in digital outputs.

The system could be extended with up to 64 ENIP-2, ESM, and ENMV-1.

ENCM-3 can provide access to revenue meters and other devices installed on facilities by tunneling RS-485/232.

On-site time sync is provided by ENCM-3 with a built-in GLONASS/GPS receiver.

Automation of switching equipment

ENCM-3 is installed in the control cabinet of the switching equipment of the overhead transmission line (e.g. recloser, load switch, disconnector) and provides remote control and monitoring.

Programmable logic expressions of ENCM-3 turn it into a programmable logic controller and make easy automation of switching equipment (e.g. autoreclosing).

Fault localization

ENLZ receives the statuses of the short-circuit current indicators and performs measurements of $3I_1$ and $3U_1$ synchrophasors. ESM-ET measures network parameters, ENMV-1 processes digital signals, and controls switching devices.

ENCM-3 synchronizes devices and provides communication with the power grid control center.

The software ES-Graph analyzes the obtained data and identifies the damaged sections of the cable power grid.
Substation monitoring and control

SCADA

ENIP-2 measures network and feeder (bay) parameters, ENMI displays measurements, ENMV-1 controls the switching equipment and processes digital signals, and ENMV-1W with 1-Wire temperature sensors provides environmental conditions data at the substation.

ENCS-3m polls devices via RS-485 and transmits data to the upper control level.

ENCS-2 provides timing for all devices.

SCADA, power metering, and power quality monitoring

ESM performs power metering, monitors power quality, and provides the measurement of network parameters.

ENMV-1 controls the switching equipment, processes digital signals, and defines the on-load tap-changer position of the transformer.

ENMV-1W with 1-Wire temperature sensors provides environmental conditions data at the substation.

ENCS-3m polls devices via the local network and transmits data to the upper control level.

ENCS-2 provides timing for all devices.
RTU Redundancy methods

«Warm» redundancy, data acquisition via RS-485

Two and more ENCS-3’s are coupled with a CAN. Only one of the RTUs is active at any time. It polls devices and communicates with the upper level. The active RTU reports its status to the inactive one and switches roles if it loses connection with the polled devices.

«Hot» redundancy, data acquisition via RS-485

Two and more ENCS-3’s operate independently and poll the same devices being connected to the different ports.

«Hot» redundancy, data acquisition via network with ring topology (RSTP)

Two and more ENCS-3’s poll the same devices via LAN (ring topology). Data are transmitted to the higher level to two independent networks.

«Hot» redundancy, data acquisition via two separated networks (PRP)

Two and more ENCS-3’s operate in «hot» redundancy, data are transmitted to the higher level to two independent networks or via PRP (IEC 62439-3 Clause 4).
ENMU publishes SV and GOOSE and controls switching equipment. Additionally ENMU calculates synchronized current and voltage phasors.

ESM-SV operates as a revenue meter, power quality analyzer, and a multifunctional measuring device. ESM-SV receives SV from ENMU and/or NCIT.

ENCS-3m communicates in accordance with IEC 61850-8-1 or IEC 60870-5-104. ENCS-2 provides timing for all devices. For reliable time synchronization it is recommended to use multiple ENCS-2 (SNTP; IEEE 1588 PTPv2, BMCA).

ENIP-2 PMU performs phasor current and voltage measurements and calculates grid parameters.

ENMV-3 provides DC circuit measurement in generator excitation circuits.

ES-PDC aggregates and transmits data via IEEE C37.118.2, and records cyclic and emergency archives of a configurable depth.

ENCS-3m transmits data to the higher level via IEC 60870-5-104.

ENMI-6 diagnostic panel controls the health of each system element.

ENCS-2 provides timing for all devices.
Our products and their components pass rigorous quality control at all stages from development to serial production. We provide our customers with a 5-year warranty for ENIP-2, ESM, ENMI, ENMV, ENCS-2, ENCS-3m, ENCM-3, ENMU. We guarantee to deliver high-quality technical support that won’t leave our customers dissatisfied. We regularly organize free technical seminars, both online and offline, which serve as a great learning tool for our users.

You can find more information about our products and solutions at www.enip2.com.

Please, feel free to contact us if you’ve got questions or you would like to place an order.

Engineering Center Energoservice
enip2@ens.ru, www.enip2.com

Product catalog 2024, English edition 2 (updated 29.05.2024).
ENIP® is a registered trademark of Engineering Center Energoservice.
Although every effort has been made to ensure the integrity of this publication, Energoservice makes no warranties as to the completeness or accuracy of the information. The specifications and design of the products are subject to change without notice. All pictures shown are for illustration purposes only. Actual specifications such as colors and on-screen menus may vary. Please contact us for the confirmation of the information provided in this catalog.