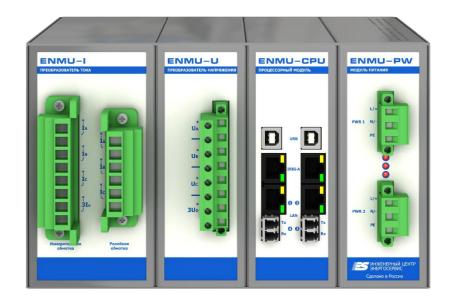
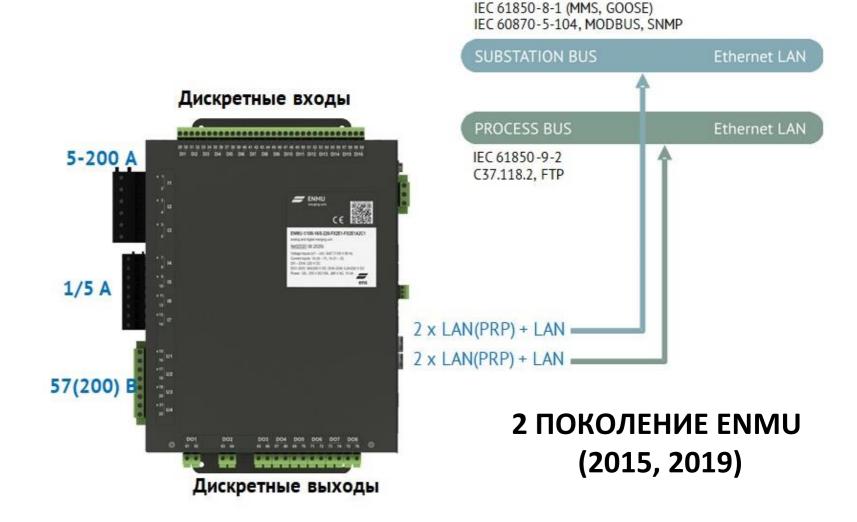


Цифровой комбинированный измерительный трансформатор среднего класса напряжения для задач релейной защиты и управления


Ульянов Д.Н. ООО «Инженерный центр «Энергосервис»,

Научно-практической конференции «Релейная защита и автоматизация энергосистем. Совершенствование эксплуатации и перспективы развития» 6 сентября 2023 г.


АКТУАЛЬНОСТЬ

■ Развитие цифровых технологий в электроэнергетике уже сегодня приводит к появлению промышленных образцов электротехнического оборудования нового поколения, таких как цифровые измерительные трансформаторы, интеллектуальные высоковольтные выключатели и силовые трансформаторы со встроенными датчика тока и напряжения. Вышеуказанное оборудование уже сейчас оснащено в той или иной мере встроенными устройствами сопряжения с шиной процесса (AMU) и шиной подстанции (DMU) для реализации эффективного контроля и управления.

1 ПОКОЛЕНИЕ ENMU (2013)

С 2013г. ООО «Инженерный центр «Энергосервис» активно ведет разработку и внедрение устройств сопряжения с шинной процесса, как отдельно стоящих (SAMU), так встроенных в цифровые измерительные трансформаторы (AMU). За последние 10 лет накоплен практический опыт реализации устройств данного класса и выявлены ряд широко проявляющих себя проблем.

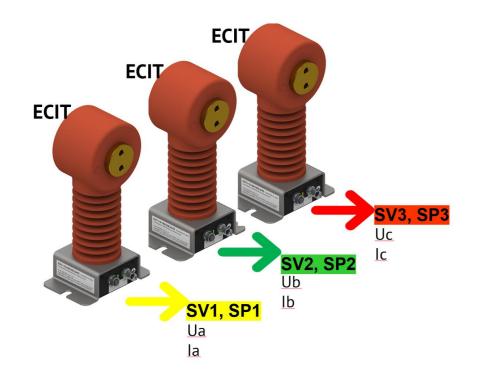
ПРОБЛЕМАТИКА

В части общего применения шины процесса:

- Изначальный принцип разделения сетей на шину процесса и шину подстанции несет в себе существенное удорожание и усложнение коммуникационный среды контролируемого объекта, одновременно со снижением гибкости в обмене информацией между ИУЭ.
- При большом (100 и более) числе на подстанции устройств сопряжения с шиной процесса с ограниченным набором измерительных каналов, к примеру по одной величине (і или u) или по одной фазе, возникает нехватка пропускной способности сети Ethernet 100 Мб/с.
- Для большинства случаев передача 96 выборок мгновенных значений за период промышленной частоты в SVпотоке по шине процесса для решения задач релейной зашиты приводит к избыточному трафику и повышению
 требований к вычислительным возможностям и как следствие удорожанию устройств РЗА.

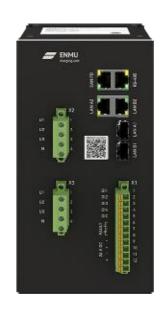
В части применения отдельно стоящих устройств сопряжения с шиной процесса (SAMU):

Широко распространенный подход заключенный в применение отдельно стоящих устройств сопряжения (SAMU) с шиной процесса, подключенных к традиционным электромагнитным трансформаторам тока и напряжения:


- не приводит к уменьшению комплексной метрологической погрешности измерительных каналов;
- не приводит к повышению быстродействия обработки информации;
- снижает помехоустойчивость (ЭМС) и надежность измерительных каналов;
- увеличивает объем и сложность обслуживания измерительных каналов.

ПРОБЛЕМЫ СОВМЕСТИМОСТИ И ПОВЫШЕНИЯ НАДЕЖНОСТИ

- При использовании ИЭУ и SAMU (AMU) от разных производителей необходима гибкая настройка и поддержка реализации стандартов формирования и обработки SV-потоков: IEC 61850-9-2LE, IEC 61869-9, корпоративных профилей электроэнергетический компаний.
- Для повышения совместимости в шине процесса на уровни сетевого оборудования и подключаемых устройств необходимо поддержка обоих РТР профилей для IEEE С37.118 и IEC 61850-9-3.
- Для повышения надежности функционирования шины процесса с применением оборудования от различных производителей необходимо внести дополнительные требования к функционалу всех подключаемых к шине процесса устройств: прием не менее трех SV-потоков, их переключение по заданным условиям и диагностика в ИЭУ, запись осциллограмм и журналирование PTP, подписка и публикация GOOSE-сообщений, наличие собственных дискретные входов/выходов в AMU/SAMU.


НОВЫЕ РАЗРАБОТКИ


- 1. Повышение многофункциональности AMU в части вычислений и передачи синхронизированных векторных измерений по шине процесса в рамках требований к формату кадров Ethernet стандартов IEC 61850-9-2LE, IEC 61869-9 с количеством измерений 10, 20, 40, 80 и 96 раз за период промышленной частоты. С последующим приемом СВИ устройствами РЗА для обработки уже вычисленных комплексных амплитуд и фазового угла в замен SV-потока.
- 2. Широкое внедрение **цифровых комбинированных измерительных трансформаторов** со встроенным АМU и передачей по шине процесса не только мгновенных значений с частотой выборки до 14400 Гц, но и синхронизированных векторных измерений.

3 ПОКОЛЕНИЕ ENMU (2021)




Совмещенная шина процесса и шина подстанции 2 x SFP, 1G/100Mb, PRP/HSR, PTP 2 x 100 Mb

Устройство сопряжения с шиной процесса ENMU является многофункциональным устройством и функции **PMU** дополнительно выполняет (измерение синхрофазоров тока и напряжения), (PDC), векторных концентратора данных аварийных регистратора режимов, преобразователя измерительного телемеханики.

ЦИФРОВОЙ КОМБИНИРОВАННЫЙ ИЗМЕРИТЕЛЬНЫЙ ТРАНСФОРМАТОР 6-10 КВ

Цифровой комбинированный датчик тока и напряжения 10 кВ TECV.Р1-10

Модификации TECV.Р1-10:

• с цифровым выходом передачи измерений.

Измерение тока:

- трансформатор тока маломощный LPCT,
- катушка Роговского.

Измерение напряжения:

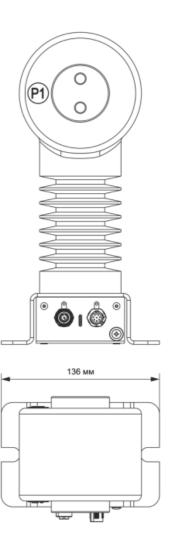
• емкостной делитель напряжения.

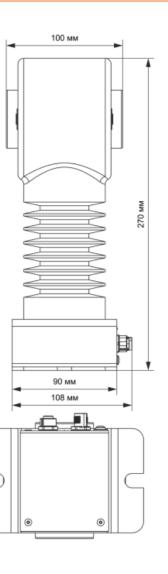
Поддержка **МЭК 61850-9-2LE**, 1(2) nopma Ethernet.

Поддержка низкоуровневой шины процесса на базе сети **FlexRay** (2 резервируемых канала).

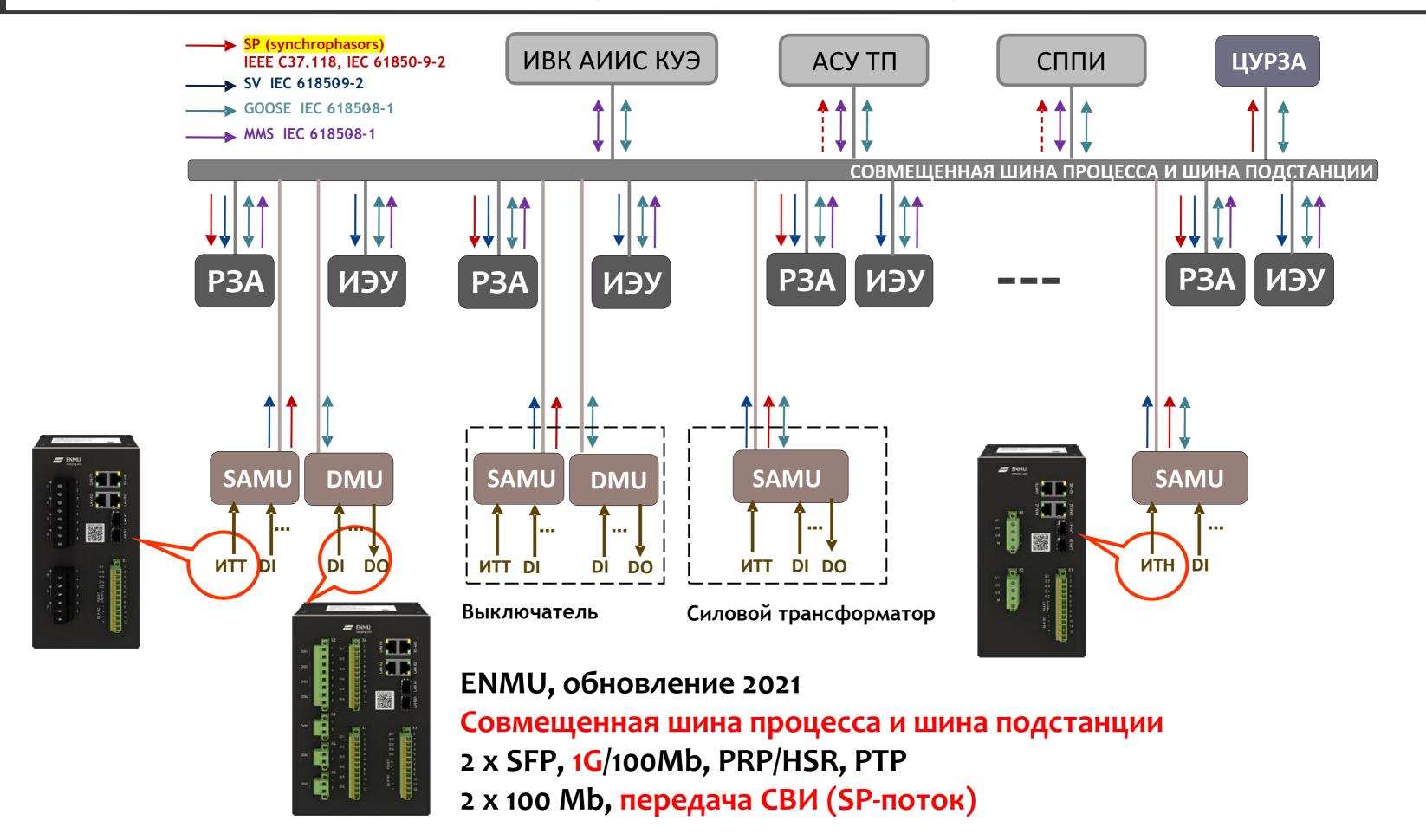
Цифровой КДТН **TECV.P1-10** со **встроенным** преобразователем аналоговых сигналов (AMU) на базе серийного ENMU

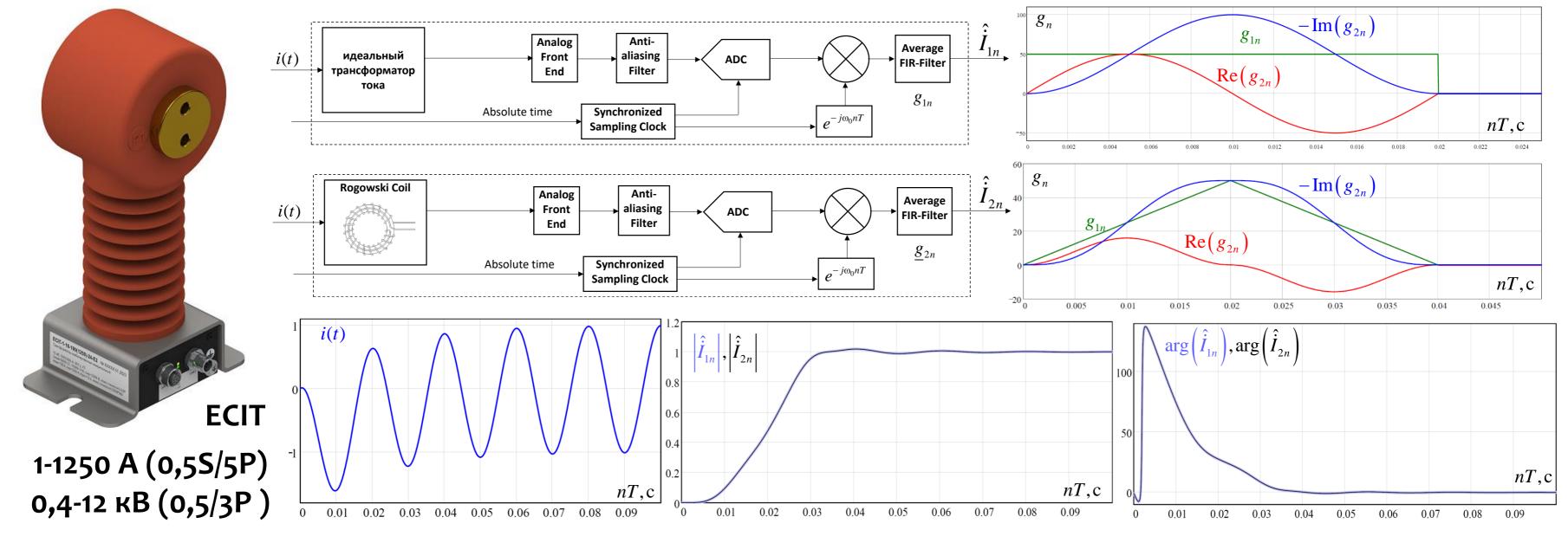
Первый в мире цифровой ЦКДТН среднего напряжения 2017 г.


ЦИФРОВОЙ КОМБИНИРОВАННЫЙ ИЗМЕРИТЕЛЬНЫЙ ТРАНСФОРМАТОР ЕСІТ

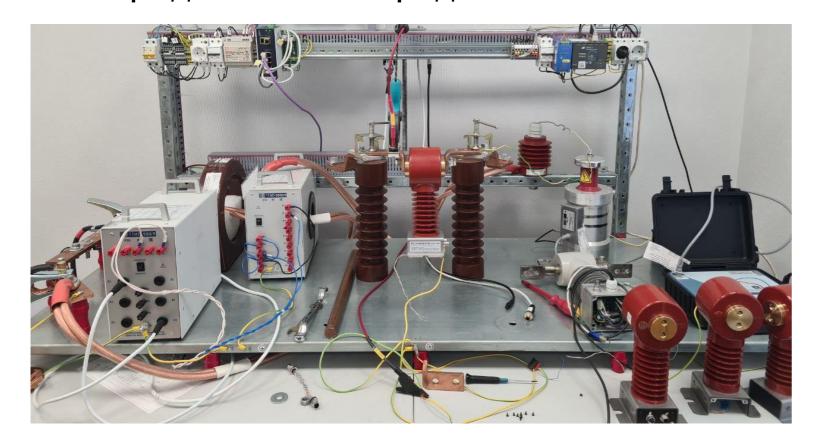

Nº	Наименование характеристики	Значение
1.	Номинальная частота f, Гц	50
2.	Класс напряжения, кВ	10
3.	Наибольшее рабочее напряжение Uнр, кВ	12
4.	Испытательное напряжение 50 Гц, 1 мин, кВ	28
5.	Наибольший рабочий ток Інр, А	1250
6.	Ток трехсекундной термической стойкости I _{th} , кА	20
7.	Ток электродинамической стойкости I _{dyn} , кА	51
8.	Количество измеряемых фаз	1
9.	Значение частоты дискретизации ¹⁾ , Гц	4000; 4800; 12000; 12800; 14400

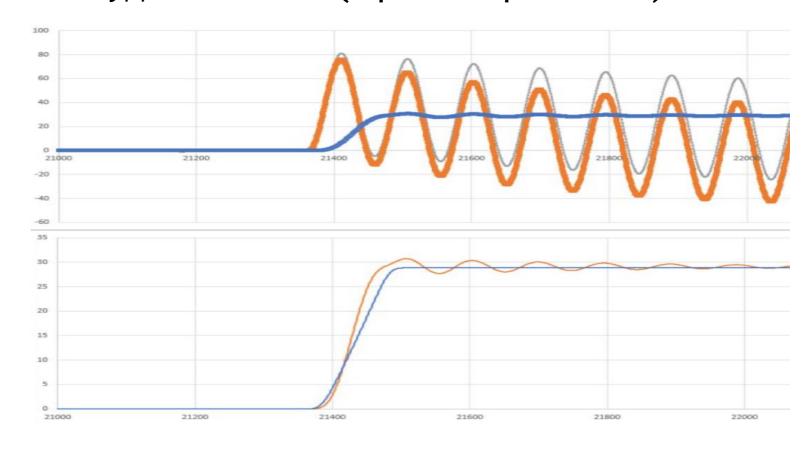
Nº	Наименование характеристики	Значение
1.	Номинальное напряжение переменного тока U _н , В	11000/√3
2.	Класс точности по напряжению для измерений в диапазоне от $0,2 \cdot U_{\scriptscriptstyle H}$ до $1,2 \cdot U_{\scriptscriptstyle H}$ согласно ГОСТ 1983 (ГОСТ Р МЭК 60044-7)	0,5
3.	Предел допускаемой основной относительной погрешности преобразований среднеквадратического значения ¹⁾ напряжения переменного тока для измерений, %	±0,5 при 0,2·U _н ≤ U ≤ 1,2·U _н
4.	Предел допускаемой абсолютной погрешности преобразований угла фазового сдвига между входным и выходным напряжениями переменного тока для измерений, минут	±20 при 0,2·U _н ≤ U ≤ 1,2·U _н
5.	Номинальный коэффициент перенапряжения F _v	1,9/8
6.	Класс точности по напряжению для защиты в диапазоне от $0,005 \cdot U_{\scriptscriptstyle H}$ до $1,9 \cdot U_{\scriptscriptstyle H}$ согласно ГОСТ 1983 (ГОСТ Р МЭК 60044-7)	3P
7.	Предел допускаемой основной относительной погрешности преобразований среднеквадратического значения напряжения переменного тока для защиты, %	±3 при 0,005·U _н ≤ U ≤ 1,9·U _н
8.	Предел допускаемой абсолютной погрешности преобразований угла фазового сдвига между входным и выходным напряжениями переменного тока для защиты, минут	±120 при 0,005·U _н ≤ U ≤ 1,9·U _н
9.	Номинальный первичный ток Ін, А	100


Nº	Наименование характеристики	Значение
10.	Номинальный коэффициент превышения первичного тока Крсг	12,5
11.	Класс точности по току для измерений согласно ГОСТ 7746 (ГОСТ Р МЭК 60044-8)	0,5S
12.	Пределы допускаемой основной относительной погрешности преобразований среднеквадратического значения силы переменного тока для измерений, %	±0,75 при 0,01·I _н ≤ I < 0,05·I _н ±0,5 при 0,5·I _н ≤ I ≤ 12,5·I _н
13.	Пределы допускаемой абсолютной погрешности преобразований угла фазового сдвига между входной и выходной силами переменного тока для измерений, минут	±45 при 0,01·I _H ≤ I < 0,05·I _H ±30 при 0,5·I _H ≤ I ≤ 12,5·I _H



ИНТЕГРАЦИЯ ТЕХНОЛОГИЙ ЦПС И СВИ


ЦИФРОВОЙ КОМБИНИРОВАННЫЙ ИЗМЕРИТЕЛЬНЫЙ ТРАНСФОРМАТОР ЕСІТ


- В ЕСІТ производиться цифровая обработка сигналов для восстановления первичного тока от катушки Роговского с последующим формированием SV-потоков и дополнительная обработка сигналов для формирования синхровекторов тока.
- Разработан метод синтеза цифровых фильтров для формирования синхровекторов с учетом особенностей катушки Роговского. При этом вместо усредняющего КИХ-фильтра, предложено использовать КИХ-фильтр с комплексной импульсной функцией. Математическое моделирование такого подхода показало высокое быстродействие и точность при вычислении комплексной амплитуды и фазового угла первой гармоники в переходном режиме с учетом апериодической составляющей.

ПРОВЕДЕНИЕ ИССЛЕДОВАНИЙ

- С помощью лабораторного источника тока OMICROM CMC256plus через усилитель 400A были воспроизведены сигналы тока, соответствующие различным электромагнитным и электромехническим переходным режимам энергосистемы с отклонением частоты до +/-5Гц. Измерения сгенерированных таким образом сигналов собиралась от ECIT в виде SV-потока, в виде данных СВИ согласно IEEE C37.118, а также в виде SP-потока СВИ (10 и 96 синхровекторов за период промышленной частоты) на базе разработанного алгоритма.
- Сделан промежуточный вывод об ограниченной возможности применения СВИ класса Р и М согласно IEEE С37.118 для задач релейной защиты и управления на подстанциях с цифровой шиной процесса в отличие от предложенного SP-потока с подтвержденным быстродействием определения комплексной амплитуды в 11-28 мс (в разных режимах).

выводы

По результатам проведенных исследований доказано:

- преимущество использования цифровых измерительных трансформаторов со встроенным AMU по сравнению с отдельно стоящими SAMU. Такой подход дает улучшение метрологических характеристик измерений, повышение помехоустойчивости, возможность мониторинга состояния оборудования и наличие цифровых коммуникаций.
- предложенный цифровой фильтр комплексной импульсной функцией позволяет вычислять синхронизированные векторные измерения в составе цифрового трансформатора тока и использовать их для различного функционального назначения, в том числе для устройств релейной защиты и автоматики, и для многофункциональных измерительных ИЭУ.
- цифровые трансформаторы тока на базе катушки Роговоского с выдачей SV- и SP- потока не уступают по точности электромагнитным измерительным трансформаторам тока в стационарных режимах, но при этом превосходят их по диапазонам измерений тока и точности в переходных режимах работы энергосистем.
- проблему повышенной загрузки сети передачи данных цифровой шины процессов, а также проблему высоких требований к вычислительным возможностям устройств РЗА поможет решить вычисление СВИ и передача SP-потока на базе цифровых комбинированных трансформаторов тока и напряжения с настраиваемой частотой измерений от 10 до 96 раз за период.

Благодарим за внимание!

Приглашаем посетить наш сте<u>нд в</u> 55 павильоне ВДНХ, СО2 импульс 1 Гардероб ЭКРА ВХОД в павильон АкЭл ЭЛТЕХНИКА Охрана 22 м²

Ульянов Дмитрий Николаевич Зам. генерального директора ООО «Инженерный центр «Энергосервис» d.ulyanov@ens.ru