Сочи, 30 мая - 01 июня

Международная научно-техническая конференция

РАЗВИТИЕ ТЕОРИИ СВИ ДЛЯ СОВЕРШЕНСТВОВАНИЯ СИСТЕМ УПРАВЛЕНИЯ, МОНИТОРИНГА, РЕЛЕЙНОЙ ЗАЩИТЫ И АВТОМАТИКИ

Мокеев Алексей Владимирович

Мокеев А.В., Пискунов С.А.

ООО «Инженерный центр «Энергосервис», Северный (Арктический) федеральный университет

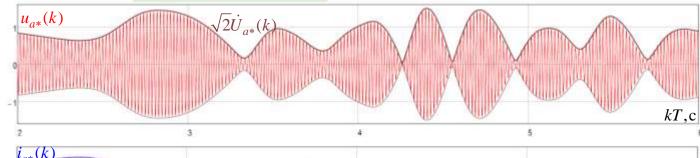
Россия

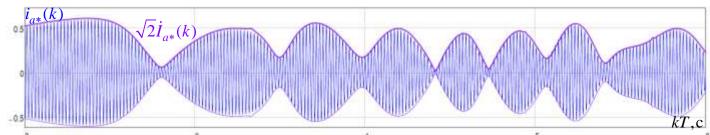
ПРЕИМУЩЕСТВА СИНХРОВЕКТОРОВ

Синхровектор напряжения и мгновенная частота

$$\dot{U}(t) = \frac{1}{\sqrt{2}} U_m(t) e^{j\varphi(t)}$$

$$\omega(t) = \omega_0 + \frac{d\varphi(t)}{dt}$$





- точная оценка синхровекторов тока и напряжения при электромеханических переходных процессах в энергосистеме;
- высокая точность синхронизации времени (1 мкс);
- высокий темп передачи данных (≥50 раз/сек);
- расчет около 100 параметров режима энергосистемы на любом уровне управления;
- расчет параметров режима с учетом высших гармоник при использовании эквивалентных синхровекторов;
- оценка параметров схемы замещения энергосистемы.

Развитие теории СВИ позволит повысить техническое совершенство систем *релейной защиты, автоматики, мониторинга и управления* и позволит приступить к реализации распределенных систем WAMPACS.

Актуальными являются задачи, связанные с определением синхровекторов электромеханических и электромагнитных переходных процессов. Их исследование позволяет разработать новые алгоритмы релейной защиты, автоматики, мониторинга и управления.

Требования к устройствам РЗА с поддержкой СВИ:

- повышения быстродействия и снижение требований по точности обработки сигналов;
- расширение диапазона измерений синхровекторов тока и напряжения;
- обеспечение правильной работы РЗА в условиях электромагнитных переходных процессов;
- повышение темпа передачи синхровекторов;
- внесение изменений в протокол IEEE C37.118.2 или передача синхровекторов с использованием протокола IEC 61850-9-2;
- обеспечение надежной синхронизации устройств РЗА;
- разработка новых тестов для испытаний устройств РЗА с поддержкой СВИ.

СИНХРОВЕКТОРЫ ПЕРЕХОДНЫХ ПРОЦЕССОВ

Определения синхровекторов тока $\dot{I}_1(t)$ и напряжения $\dot{U}_1(t)$ при трехфазном металлическом КЗ при заданном синхровекторе ЭДС $\dot{E}_1(t)$.

Рис. 1 а): Модель энергосистемы

Мокеев А.В. Анализ синхровекторов переходных процессов в энергосистеме // Электрооборудование: эксплуатация и ремонт, 2022, №1, С.62-70.

No	Метод	Выражения
1	Декомпозиция ЭДС	$e_1(t) = \operatorname{Re}(\dot{\mathbf{E}}_1^{\mathrm{T}} e^{\mathbf{p}t}), \dot{\mathbf{E}}_1 = [\dot{E}_n]_N = [E_{m_n} e^{-j\phi_n}]_N, \mathbf{p} = [-\beta_n + j\omega_n]_N$
		$\dot{\mathbf{I}}_{1}(t) = \dot{\mathbf{E}}_{1} \circ Y(\mathbf{p}, t), \ \dot{\mathbf{I}}_{1s} = \dot{\mathbf{E}} \circ Y_{0}(\mathbf{p}), \ \dot{\mathbf{I}}_{1f} = \dot{\mathbf{E}}_{1} \circ Y_{1}(\mathbf{p}, t),$
		где $Y(p,t) = \int_0^t g(\tau)e^{-p\tau}d\tau$, $Y(p,t) = Y_0(p) + Y_1(p,t)$,
		\circ — операция умножения векторов, $g(t) \rightleftharpoons Y_0(p) = \frac{1}{R_{\Sigma 1} + pL_{\Sigma 1}}$
2	Частотной-	t to the state of
	временной подход	$\dot{I}_1(t) = \int_{\Omega} \dot{E}_1(\tau) dY(j\omega_0, t - \tau)$ или
		t t
		$\dot{I}_{1}(t) = \dot{E}_{1}(t)Y_{0}(j\omega_{0}) + \int_{0}^{t} Y_{1}(j\omega_{0}, \tau)d\dot{E}_{1}(t - \tau) + \dot{E}_{1}(0)Y_{1}(j\omega_{0}, t)$
3	Упрощенный	$\dot{I}_1(t) \approx \dot{E}_1(t)Y(j\omega(t),t), \ \dot{I}_{1s}(t) \approx \dot{E}(t)Y(j\omega(t)), \ \dot{I}_{1f}(t) \approx \dot{E}_1(0)Y_1(j\omega(t),t)$
	частотно-временной подход	где $\omega(t)$ - мгновенная частота, рассчитываемая на основе $\dot{E}_1(t)$
4	Решение	\dot{t}
	дифференциального	$\dot{I}_{1}(t) = L^{-1} \int_{0}^{t} \dot{E}_{1}(\tau) e^{p_{1}(t-\tau)} d\tau , \dot{U}_{1}(t) = \underline{z}_{k1} \dot{I}_{1}(t) + L_{k1} \frac{dI_{1}(t)}{dt}$
	уравнения	где $p_1=eta_1^0+j\omega_0,\; eta_1=R_{\Sigma 1}/L_{\Sigma 1},\; \omega_0=2\pi 50$ рад/с
5	На основе интеграла свертки	$\dot{I}(t) = L^{-1} \int_{0}^{t} \dot{E}_{1}(t-\tau)e^{-p_{1}\tau}d\tau$

Табл. 1: Методы анализа переходных процессов

СИНХРОВЕКТОРЫ ПЕРЕХОДНЫХ ПРОЦЕССОВ

Дифференциальное уравнение при металлическом КЗ на линии

$$e_1(t) = i_1(t)R_{\Sigma 1} + L_{\Sigma 1} \frac{di_1(t)}{dt}$$

где
$$R_{\Sigma 1} = R_{c1} + R_{k1}$$
, $L_{\Sigma 1} = L_{c1} + L_{k1}$.

Постановка $i_1(t) o \dot{I}_1(t) e^{j\omega_0 t}$, $e_1(t) o \dot{E}_1(t) e^{j\omega_0 t}$

$$\dot{E}_1(t) = \underline{z}_{\Sigma 1} \dot{I}_1(t) + L_{\Sigma 1} \frac{d\dot{I}_1(t)}{dt}$$

где
$$z_{\Sigma 1} = R_{\Sigma 1} + j\omega_0 L_{\Sigma 1}$$
.

Определения синхровектора тока (п.4, табл.1)

$$\dot{I}_1(t) = L^{-1} \int_0^t \dot{E}_1(\tau) e^{p_1(t-\tau)} d\tau = L^{-1} F(t,t) - L^{-1} F(t,0)$$

где $F(t,\tau)$ – первообразная интеграла.

 $L^{-1}F(t,t)$ определяет принужденную, а $L^{-1}F(t,0)$ свободную составляющую полного синхровектора тока.

Мгновенный ток переходного процесса

$$i_1(t) = Re(\dot{I}_1(t)e^{j\omega_0 t}).$$

Анализ электромагнитного переходного процесса при $\dot{E}_1(t) = \dot{E} = E_m e^{j\phi}$.

Множитель $1/\sqrt{2}$ здесь и далее исключен из выражений для синхровекторов для наглядности построения графиков.

№	Наименование	Выражение
1	Решение ДУ	$\dot{I}(t) = L^{-1} \int_{0}^{t} \dot{E}(\tau) e^{-p_{1}(t-\tau)} d\tau = L^{-1} \dot{E} \int_{0}^{t} e^{-p_{1}(t-\tau)} d\tau$
2	Определение первообразной	$F(t,\tau) = \int e^{-p_1(t-\tau)} d\tau = \frac{e^{p_1(t-\tau)}}{p_1}$
3	Принужденная составляющая	$\dot{I}_{1s} = \frac{\dot{E} \cdot F(t,t)}{L} = \frac{\dot{E}}{p_1 L} = \frac{\dot{E}}{z_{\Sigma 1}},$ $\dot{i}_{1s}(t) = \text{Re}(\dot{I}_{1s} e^{j\omega_0 t})$
4	Свободная составляющая	$ \dot{I}_{1f}(t) = \frac{\dot{E} \cdot F(t,0)}{L} = -\frac{\dot{E}}{\underline{z}_{\Sigma 1}} e^{-p_1 t}, $ $ \dot{I}_{1f}(t) = \operatorname{Re}\left(\dot{I}_{1f}(t)e^{j\omega_0 t}\right) = -\operatorname{Re}\left(\frac{\dot{E}}{\underline{z}_{\Sigma 1}}\right) e^{-\beta_1 t} $

Табл. 2: Пример расчета полного синхровектора тока и его компонент

СИНХРОВЕКТОРЫ ПЕРЕХОДНЫХ ПРОЦЕССОВ

Рис. 1 б): Модель энергосистемы

Расчет синхровекторов тока и напряжения.

Заданы $\dot{E}_{1}(t)$ и $\dot{E}_{2}(t)$.

Требуется определить синхровектор тока в линии $\dot{l}_1(t)$ и синхровекторы напряжений $\dot{U}_1(t)$ и $\dot{U}_1(t)$.

Необходимо сделать следующие замены в табл.1:

вместо $\dot{E}_1(t)$ необходимо использовать

$$\Delta \dot{E}(t) = \dot{E}_1(t) - \dot{E}_2(t)$$

и сделать замены в выражениях для сопротивлений.

Идентификация параметров линии

Известны $\dot{I}_1(t)$, $\dot{U}_1(t)$ и $\dot{U}_2(t)$.

Требуется выполнить оценку параметров линии. После преобразования диф. уравнения получим

$$\Delta \dot{U}(t) = \underline{z}_{1} \dot{I}_{1}(t) + L_{1} \frac{d\dot{I}_{1}(t)}{dt}.$$

Оценка сопротивления

$$\underline{z}_{1} = \frac{\Delta \dot{U}(t)}{\dot{I}(t) + k_{1}\dot{I}'(t)},$$

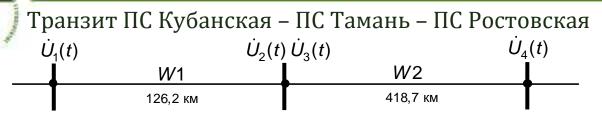
где
$$\dot{I}'(t) = \frac{d\dot{I}(t)}{dt}, \ \underline{k}_1 = \frac{L_{\text{уд}}}{\underline{z}_{\text{уд}}}$$

Виртуальное УСВИ

Известны $\dot{I}_1(t)$, $\dot{U}_1(t)$, \underline{z}_1 . Требуется найти $\dot{U}_2(t)$.

$$\dot{U}_{2}(t) = \dot{U}_{1}(t) - \underline{z}_{1}\dot{I}_{1}(t) - L_{1}\frac{d\dot{I}_{1}(t)}{dt}$$

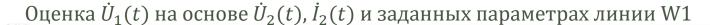
ВИРТУАЛЬНЫЙ УСВИ, ВЕРИФИКАЦИЯ, ИДЕНТИФИКАЦИЯ

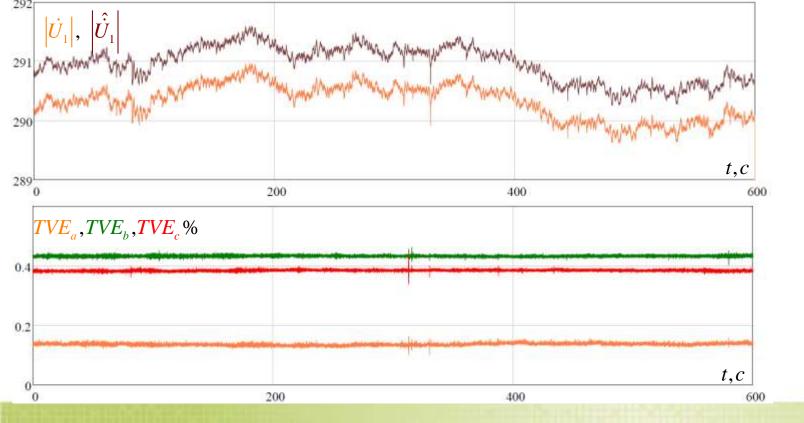


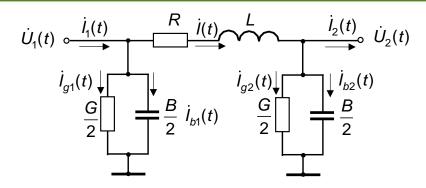
ПС Кубанская

ПС Тамань

ПС Ростовская







$$\begin{split} \dot{I}(t) &= \dot{I}_{2}(t) + \dot{I}_{g2}(t) + \dot{I}_{b2}(t) \\ \dot{I}(t) &= \dot{I}_{2}(t) + \frac{G}{2}\dot{U}_{2}(t) + j\frac{B}{2}\dot{U}_{2}(t) + \frac{B}{2\omega_{0}}\frac{d\dot{U}_{2}(t)}{dt} \\ \dot{U}_{1}(t) &= \dot{U}_{2}(t) + \underline{z}\dot{I}(t) + L\frac{d\dot{I}(t)}{dt}, \\ \text{где } \underline{z} &= R + j\omega_{0}L \end{split}$$

$$\begin{split} \dot{I}(n) &= \dot{I}_{2}(n) + \dot{I}_{g2}(n) + \dot{I}_{b2}(n) \\ \dot{I}(n) &= \dot{I}_{2}(n) + \frac{G}{2}\dot{U}_{2}(n) + j\frac{B}{2}\dot{U}_{2}(n) + \frac{B}{2\omega_{0}}\nabla\dot{U}_{2}(n) \\ \dot{U}_{1}(n) &= \dot{U}_{2}(n) + \underline{z}\dot{I}(n) + L\nabla\dot{I}(n) \end{split}$$

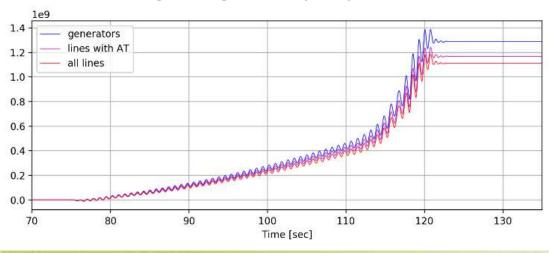
Поиск источника НЧК

N⊵	Метод	Выражения
1	Решение дифференциального уравнения	$\dot{I}(t) = rac{1}{L} \int\limits_0^t \dot{E}(au) \mathrm{e}^{\mu_c(t- au)} d au$, где $p_i = \beta + J\omega_c$, $\beta = (R_c + R)/(L_c + L)$, $\omega_c = 2\pi 50$ рад/с, R_c , L_c — параметры эквивалентной энергосистемы
2	На основе интеграла свертки	$I(t) = \frac{1}{L} \int_{0}^{t} \dot{E}(t-\tau) e^{-\rho \tau} d\tau$
3	Частотной- временной подход	$\begin{split} &I(t) = \int\limits_0^t \dot{E}(\tau) dY(j\omega_0, t - \tau) = \dot{E}(t) Y_0(j\omega_0) + \int\limits_0^t Y_1(j\omega_0, \tau) d\dot{E}(t - \tau) + \dot{E}(0) Y_1(j\omega_0, t) \end{split}$ где $g(t) \rightleftharpoons Y(\rho) = \frac{1}{R + \rho L}, \ Y(\rho, t) = \int\limits_0^t g(\tau) e^{-i\tau} d\tau, \ Y(\rho, t) = Y_0(\rho) + Y_1(\rho, t) \end{split}$
4	Упрощенный метод	$I(t) \approx \dot{E}(t) Y(j\omega(t),t), \ I_1(t) \approx \dot{E}(t) Y(j\omega(t)), \ I_2(t) \approx \dot{E}(0) Y_1(j\omega(t),t)$ где $\omega(t)$ - мгновенная частота, рассчитываемая на основе $\dot{E}(t)$

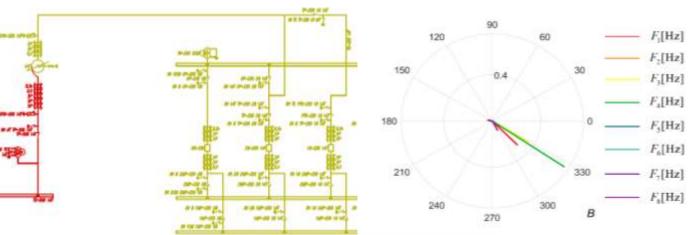
Popov I.A., Butin K.P., Dubinin D.M., Rodionov A.V., Mokeev A.V., Piskunov S.A. Examples of processing low-frequency oscillations in Russia and ways to improve the analysis // The 2022 International Conference on Smart Grid Synchronized Measurements and Analytics – SGSMA, Split, Croatia, May 24h-26th 2022.

Nº	Метод	Выражения
1	Решение разностного уравнения	$\hat{I}(n) = \frac{T}{L} \sum_{m=0}^{n} \Delta \hat{U}(n) e^{\rho_1(n-m)T}$
2	На основе свертки	$\dot{I}(n) = \frac{T}{L} \sum_{m=0}^{n} \Delta \dot{U}(n-m) e^{-p,mT}$
3	Частотной- временной подход	$\hat{I}(n) = \Delta \dot{U}(n) Y_0(j\omega_0) + T \sum_{m=0}^n Y_1(j\omega_0, m) \Delta \dot{U}(n-m) + \Delta \dot{U}(0) Y_1(j\omega_0, n)$
4	Упрощенный метод	$\dot{I}(n) \approx \Delta \dot{U}(n) Y(j\omega(n), nT), \ \dot{I}_1(n) \approx \Delta \dot{U}(n) Y(j\omega(n)), \ \dot{I}_2(t) \approx \Delta \dot{U}(0) Y_1(j\omega(n), nT)$

The Dissipating Energy Flow (DEF) method



Mode shape estimation (MSE)



СОВЕРШЕНСТВОВАНИЕ ДИСТАНЦИОННОЙ ЗАЩИТЫ

N2	Наименование	Выражение $u_1(t) = i_1(t)R_{k1} + L_{k1} \frac{di_1(t)}{dt}$	
1	Дифференциальное уравнение линии		
2	Оценка комплексного сопротивления	$ \hat{\underline{z}}_{\Sigma}(t) = \frac{\dot{U}(t)}{\dot{I}(t) + \underline{k}\dot{I}'(t)}, \text{где } \dot{I}'(t) = \frac{d\dot{I}(t)}{dt}, $ $ \underline{z}_{\Sigma 1}(t) = \underline{z}_{k1} + R_d(t), \underline{k} = L_{ya}/\underline{z}_{ya} $	
3	Оценка параметров петли КЗ	$\hat{L}_{k1}(t) = \operatorname{Im}(\hat{z}_{\Sigma}(t)), \ \hat{R}_{\Sigma 1}(t) = \operatorname{Re}(\hat{z}_{\Sigma}(t))$	
4	Оценка сопротивления дуги	$\hat{R}_d(t) = \hat{R}_{\Sigma 1}(t) - \hat{L}_{k1}(t) \frac{R_{\text{ya}}}{L_{\text{ya}}}$	
5	Оценка активного сопротивления	$\hat{R}_{e1}(t) = \hat{R}_{e1}(t) - \hat{R}_{el}(t)$.	

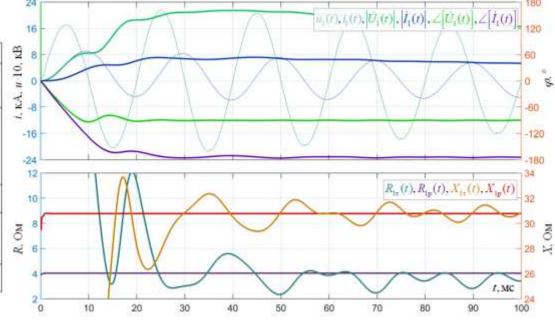


Рис. 2: Оценка R, X при одностороннем замере

Табл. 3: Оценка комплексного сопротивления петли КЗ и его компонент

Алгоритм дистанционной защиты линии 110-220 кВ на основе одностороннего измерения синхровекторов тока и напряжения при $\dot{E}_2(t)=0$, при отсутствии подпитки места КЗ от потребителей с учетом компенсации влияния дуги

СИОВЕРШЕНСТВОВАНИЕ ДИСТАНЦИОННОЙ ЗАЩИТЫ

$$\int \frac{dR_d(t)}{dt} = -\frac{R_d(t)}{\tau} \left[\frac{\left[\text{Re}(\dot{I}(t)e^{j\omega_0 t}) \right]^2 R_d(t)}{P_0} - 1 \right]$$

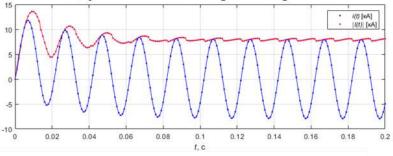
$$\frac{d\dot{I}(t)}{dt} = \frac{1}{L_{\Sigma}} \left(\dot{E}(t) - \left(\underline{z}_{\Sigma} + R_{d}(t) \right) \dot{I}(t) \right)$$

$$\underline{z}_{\Sigma} = R_{\Sigma} + j\omega_0 L_{\Sigma}$$
, $R_{\Sigma} = R + R_c$,

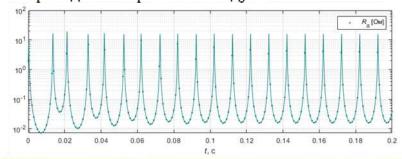
au — постоянная времени дуги,

 P_0 — рассеиваемая мощность дуги

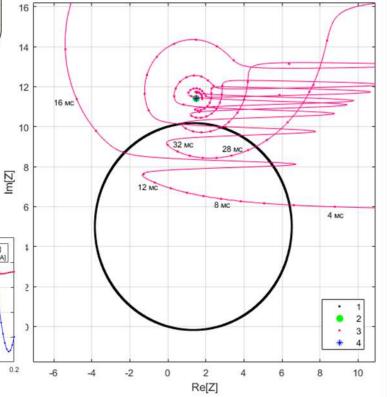
Ток и модуль полного синхровектора тока



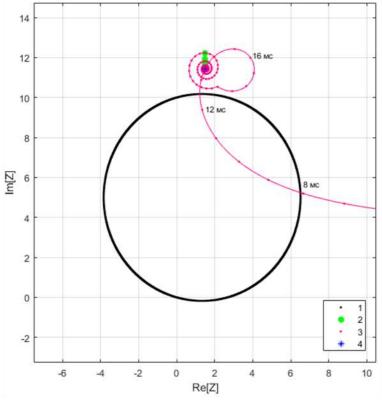
Переходное сопротивление дуги



сопротивление процесса



оценка сопротивления



- 1 характеристика срабатывания
- 2 традиционный алгоритм и АФ
- 3 предлагаемый алгоритм и АФ
- 4 истинное значение

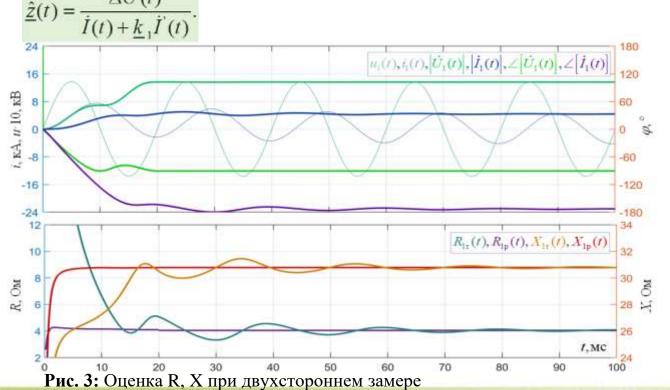
ИСПОЛЬЗОВАНИЕ ДВУХСТОРОННИХ ИЗМЕРЕНИЙ

При $\dot{I}_1(t) \neq \dot{I}_2(t)$ оценка расстояния до точки КЗ и комплексного сопротивления петли КЗ со стороны первой энергосистемы

$$\hat{l}_{k}(t) = \frac{\Delta \dot{U}(t) + \underline{z}_{yx}\dot{I}_{2}(t) + L_{yx}\dot{I}_{2}^{'}(t)}{\underline{z}_{yx}\dot{I}(t) + L_{yx}\dot{I}^{'}(t)}, \ \hat{\underline{z}}_{1}(t) = \frac{\Delta \dot{U}(t) + \underline{z}_{yx}\dot{I}_{2}(t) + L_{yx}\dot{I}_{2}^{'}(t)}{\dot{I}(t) + \underline{k}_{1}\dot{I}^{'}(t)},$$

где
$$\Delta \dot{U}(t) = \dot{U}_1(t) - \dot{U}_2(t), \dot{I}(t) = \dot{I}_1(t) + \dot{I}_2(t), \dot{I}'(t) = \dot{I}_1'(t) + \dot{I}_2'(t).$$

При $\dot{I}_1(t) = \dot{I}_2(t) = \dot{I}(t)$ (нормальный режим или внешнее КЗ)



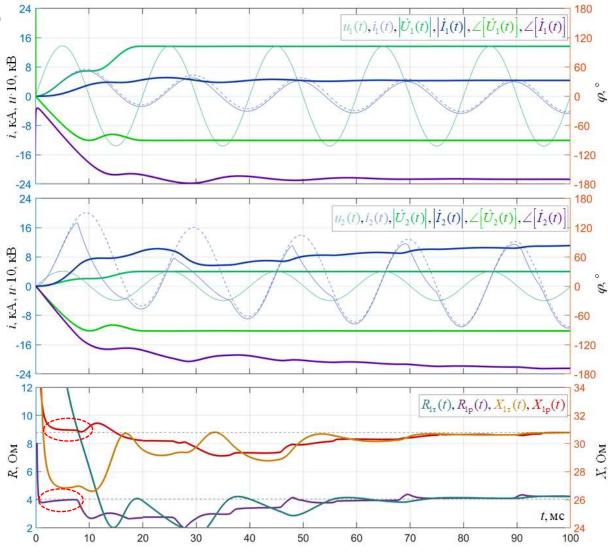


Рис. 4: Оценка R, X при двухстороннем замере при насыщении ИТТ 10

10

РАБОТА ДЗ В АСИНХРОННОМ РЕЖИМЕ

No	Наименование	Выражение		
1	Энергосистема	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
2	ду	$\Delta e(t) = R_{03}i(t) + L_{03}\frac{di(t)}{dt}$		
3	Синхровекторы	$\dot{E}_{1}(t) = \dot{E}e^{j\Delta\omega t}$, $\Delta\dot{E}(t) = \dot{E}_{1}(t) - \dot{E}_{0}$, $\Delta\omega = -2\pi5$ рад/с		
4	Подстановка в ДУ	$\Delta \dot{E}(t) = \underline{z}_{03}\dot{I}(t) + L_{03}\frac{d\dot{I}(t)}{dt}$		
5	Неоднородное ДУ	$\frac{d\dot{I}(t)}{dt} + p_{03}\dot{I}(t) = \frac{1}{L_{03}}\Delta\dot{E}(t), \text{ где } p_{03} = \beta_{03} + j\omega_0, \ \beta_{03} = \frac{R_{03}}{L_{03}}$		
6	Синхровектор тока	$\dot{I}(t) = \frac{1}{L_{03}} e^{-p_{03}t} \int_{0}^{t} \Delta \dot{E}(\tau) e^{p_{03}\tau} d\tau$		
7	Принужденная коспонента $\dot{I}(t)$	$\dot{I}_p(t) = \frac{\dot{E}}{Z_{\Delta03}} e^{j\Delta\omega t} - \frac{\dot{E}_0}{Z_{03}}$, где $Z_{\Delta03} = R_{03} + j(\omega + \Delta\omega)L_{03}$		
8	Синхровектор напряжения $\dot{U}_1(t)$	$\dot{U}_{1p}(t) = \dot{E}_{1}(t) - \underline{z}_{01}\dot{I}_{p}(t) - L_{01}\frac{d\dot{I}_{p}(t)}{dt} = \left(1 - \frac{\underline{z}_{01}}{\underline{z}_{\Delta 03}} + \frac{j\Delta\omega L_{01}}{\underline{z}_{\Delta 03}}\right)\dot{E}e^{j\Delta\omega t} + \frac{\underline{z}_{01}}{\underline{z}_{03}}\dot{E}_{0}$		
9	Синхровектор напряжения $\dot{U}_2(t)$	$\dot{U}_{2p}(t) = \dot{U}_{1p}(t) - \underline{z}_{12}\dot{I}_{p}(t) - L_{12}\frac{d\dot{I}_{p}(t)}{dt} = \left(1 - \frac{\underline{z}_{02}}{\underline{z}_{\Delta 03}} + \frac{j\Delta\omega L_{02}}{\underline{z}_{\Delta 03}}\right)\dot{E}e^{j\Delta\omega t} + \frac{\underline{z}_{02}}{\underline{z}_{03}}\dot{E}_{0}$		
10	Разность синхровекторов напряжений	$\Delta \dot{U}_{p}(t) = \dot{U}_{1p}(t) - \dot{U}_{2p}(t) = \left(\frac{\underline{Z}_{12}}{\underline{Z}_{\Delta 03}} + \frac{j\Delta \omega L_{12}}{\underline{Z}_{\Delta 03}}\right) \dot{E}e^{j\Delta \omega t} + \frac{\underline{Z}_{12}}{\underline{Z}_{03}} \dot{E}_{0}$		

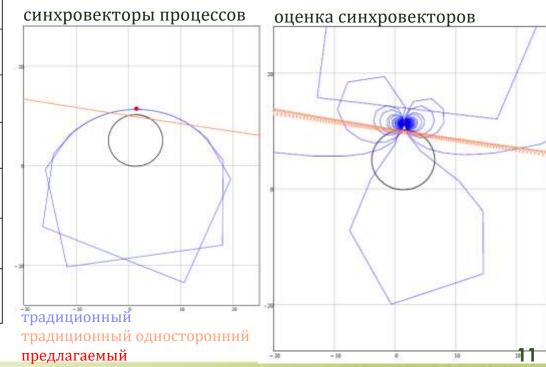
Табл. 4: Синхровекторы тока и напряжения при асинхронном режиме

Традиционный алгоритм ДЗ

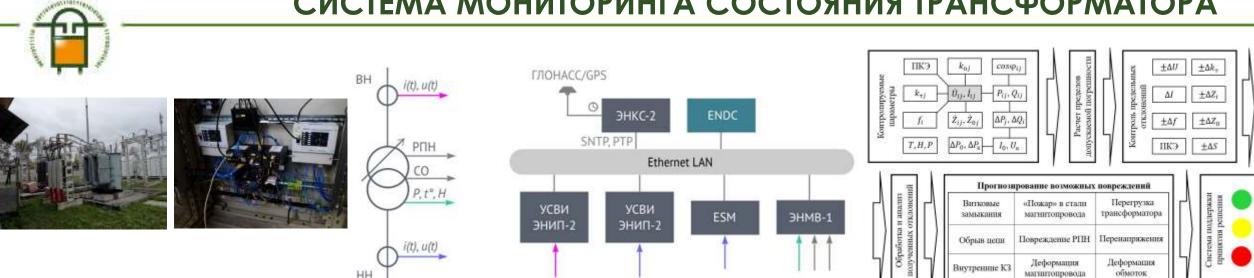
$$\underline{\hat{z}}_{12}(t) = \frac{\Delta \dot{U}(t)}{\dot{I}(t)} = \underline{z}_{12} \frac{\left(\omega_0 + \Delta \omega\right) \left(\dot{E}e^{j\Delta\omega t} - \dot{E}_0\right)}{\omega_0 \dot{E}e^{j\Delta\omega t} - \left(\omega_0 + \Delta\omega\right)\dot{E}_0}$$

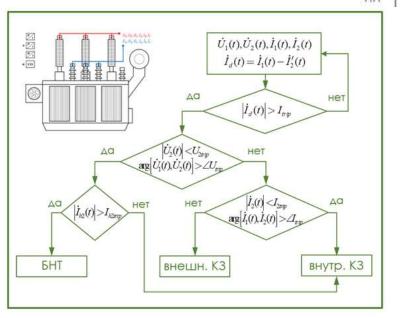
Предлагаемый алгоритм

$$\underline{\hat{z}}_{12}(t) = \frac{\Delta \dot{U}(t)}{\dot{I}(t) + \underline{k}\dot{I}'(t)} = \underline{z}_{12}$$

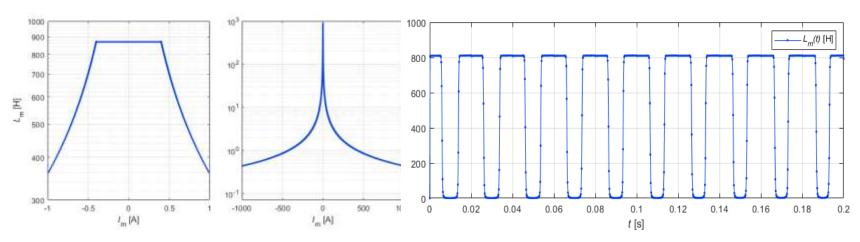


СИСТЕМА МОНИТОРИНГА СОСТОЯНИЯ ТРАНСФОРМАТОРА

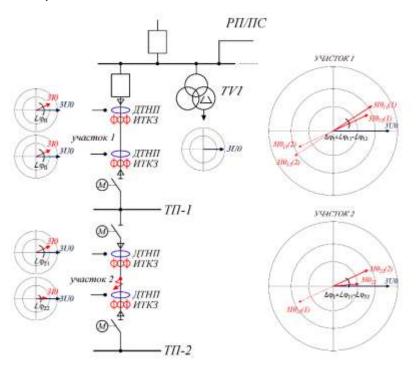




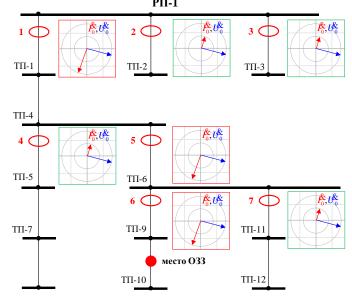
Изменение индуктивности ветви намагничивания при БТН

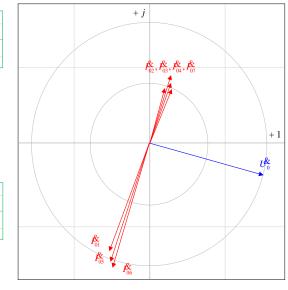


Централизованная защита НП



Направленная защита НП при использовании эквивалентных синхровекторов высших гармоник





Оценка емкости через синхровекторы тока и напряжения НП в сети с изолированной нейтралью:

$$\hat{C}_{0}(t) \approx \frac{3\dot{I}_{0}(t)}{j\omega_{0}\dot{U}_{0}(t) + \dot{U}'_{0}(t)}$$

Оценка емкости в сети с компенсацией:

$$\hat{C}_{0}(t) = -\frac{1}{3} \frac{j \omega_{0} \dot{I}_{0}(t) + \dot{I}_{0}^{'}(t) + L_{k}^{-1} \dot{U}_{0}(t)}{\dot{U}_{0}^{'}(t) + \left(j2\omega_{0} + k\right) \dot{U}_{0}^{'}(t) - \left(\omega_{0}^{2} - j\omega_{0}k\right) \dot{U}_{0}(t)},$$

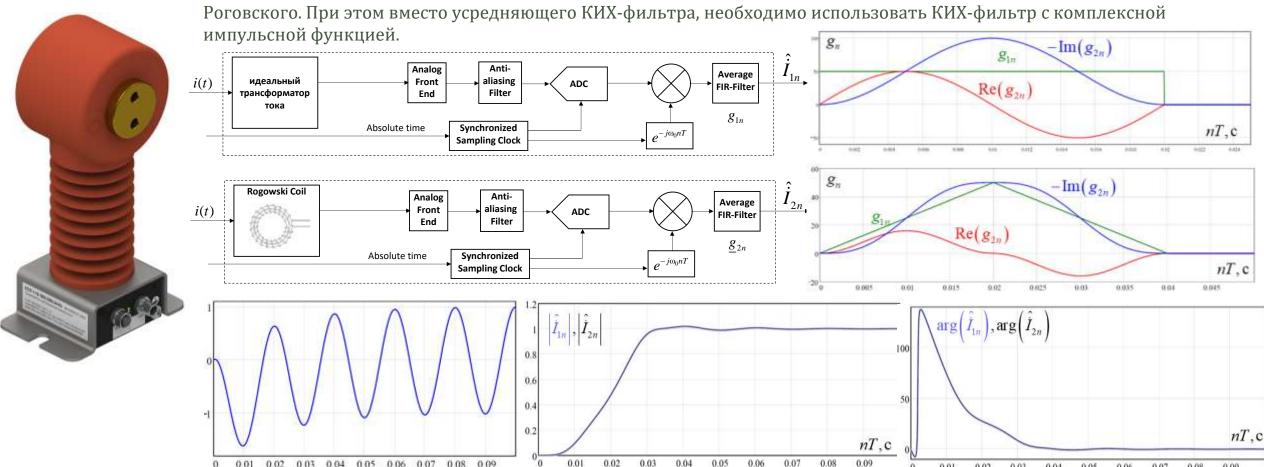
$$k = \frac{G_0}{C_0} = \frac{G_{0yx}}{C_{0yx}}$$

ЦИФРОВОЙ ИТТ НА БАЗЕ КАТУШКИ РОГОВСКОГО

Отличительная особенность первичных измерительных преобразователей тока на основе катушки Роговского связана с пропорциональностью выходного сигнала производной первичного тока.

В ЕСІТ производиться дополнительная цифровая обработка сигналов для восстановления первичного тока с последующим формированием SV-потоков и обработка сигналов для формирования синхровекторов тока.

Разработан метод синтеза цифровых фильтров для формирования синхровекторов с учетом особенностей катушки



ЗАКЛЮЧЕНИЕ

- 1. Развитие теории СВИ позволит повысить техническое совершенство систем релейной защиты, автоматики, мониторинга и управления и позволит приступить к реализации распределенных систем WAMPACS.
- 2. На основе методов анализа исходных синхровекторов напряжения и тока переходных процессов, предложены способы совершенствования устройств релейной защиты, идентификации параметров линий электропередачи, реализация виртуальных УСВИ, систем мониторинга состояния трансформаторов, улучшения динамической оценки состояния энергосистемы.
- 3. Разработаны алгоритмы быстродействующей дистанционной защиты на основе СВИ. При реализации двухсторонних измерений синхровекторов дистанционная защита будет будет эффективно отстроена от влияния нелинейного переходного сопротивления дуги, от электромеханических и электромагнитных переходных процессов.
- 4. Разработан алгоритм направленной защиты от замыканий на землю для распределительных сетей среднего напряжения, основанной на применении эквивалентных синхровекторов тока и напряжения нулевой последовательности высших гармоник. Указанная защита может применяться как локальная, так и в составе распределенных систем защиты от замыканий на землю.

СПАСИБО ЗА ВНИМАНИЕ!

Контакты:

Мокеев Алексей Владимирович, зам. генерального директора ООО "Инженерный центр "Энергосервис", профессор Северного (Арктического) федерального университета, д.т.н. 8 (911) 5917591, <u>a.mokeev@ens.ru</u>, <u>a.mokeev@narfu.ru</u>