Framework for synchrophasor measurements data processing and the case studies of the low-frequency oscillations

A. Popov¹², K. Butin¹², D. Dubinin³, A. Rodionov¹

¹Engineering center "Energoservice", Russia ²Northern (Arctic) Federal University, Russia ³System Operator of the United Power System, Russia

WAMS development in Russia

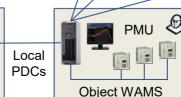
Main PDC

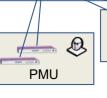
Main Control Room

Regional level

7 branches -United Control Rooms

14 branches -Regional **Dispatch Offices**

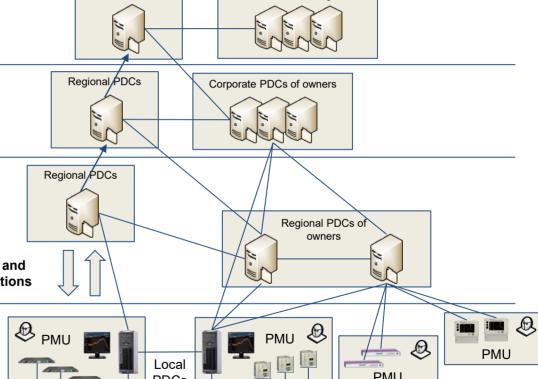



Applications:

- PSS monitoring
- Advanced visualization
- Islanding
- Low frequency oscillation monitoring
- State estimation:
 - Stability Margin Monitoring System
 - Centralized power system Integrity Control Scheme
- Post event analysis
- Model verification
- PMU data quality monitoring

Monitoring and control functions

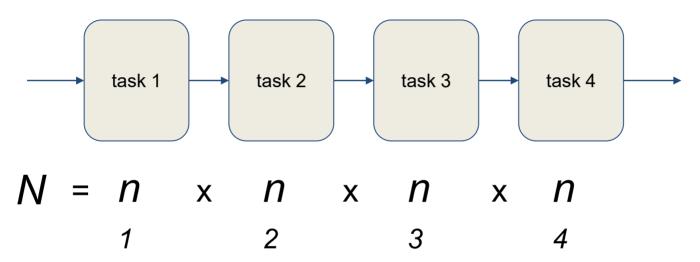
Object WAMS



135 power stations & substations 95 PDC & 900 PMU

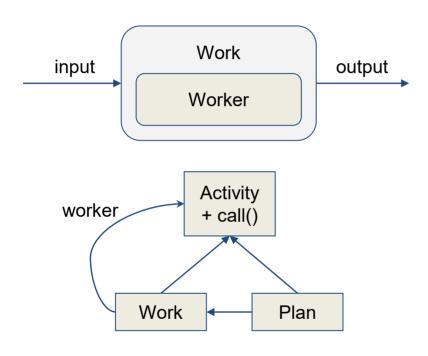
- PSS monitoring
- PMU data quality monitoring
- Low frequency oscillation monitoring Generator operation monitoring

Main PDCs of foreign ISO


Low-frequency oscillations

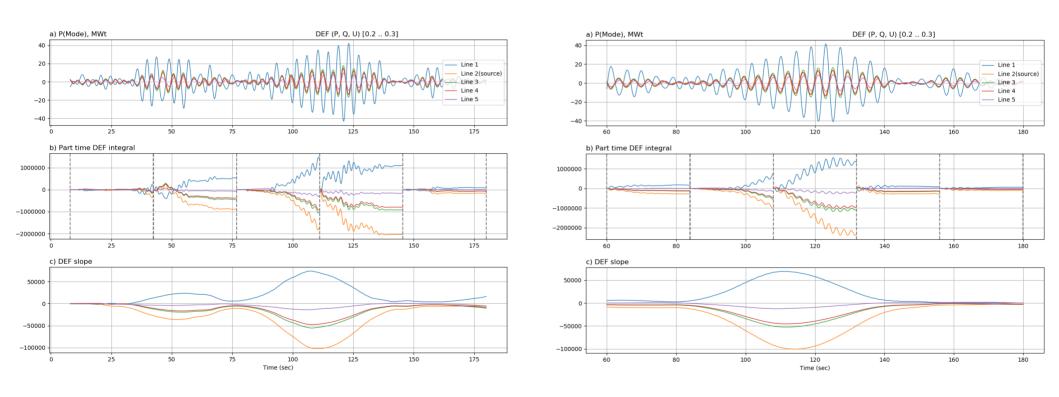
- The experience shows that LFO occur more than 10 times
 a day in the power system of Russia
- Continuous online monitoring of LFO and their source detecting in the dispatch center is required
- Challenges:
 - low observability of the power system
 - the source can be located in neighboring countries

Review 2015 – 2020


- **Focus of attention:** physics of oscillatory processes in big systems, detecting and identifying the low-frequency modes, developing new methods for locating the source of oscillations, real-time processing the large amounts of data, computational infrastructure.
- Sequence of common subtasks: data preprocessing, mode detection and selection, calculation the parameters of modes, source detection.

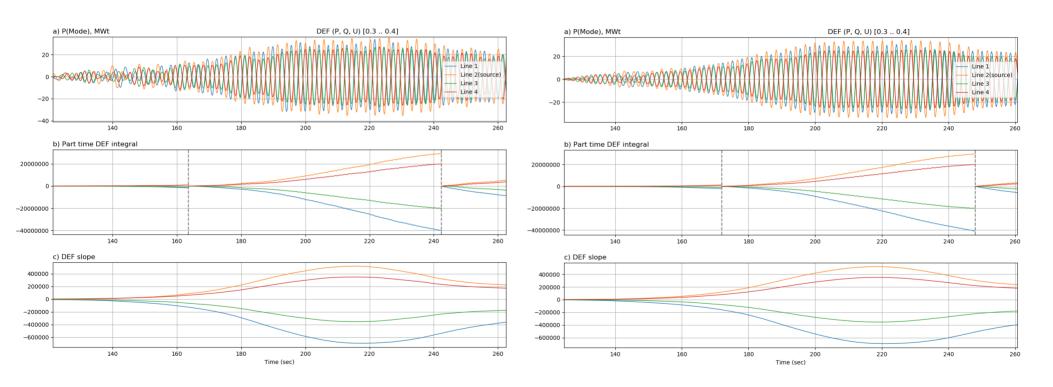
Set of solutions

- Methods
- Parameters
- Implementations


Plan

- worker is activity
- plan may be worker

```
"class" : "WorkNode",
"id" : "freq" ,
"inputs" : [ "get_mode" ],
"work" : {
  "descr" : "Get frequency of mode"
  "worker" : {
    "class" : "modulation.lqFreq" ,
    "params" : {...}
},
"result"
  "indep" : "Time" ,
  "dep" : "Frequency [Hz]"
```

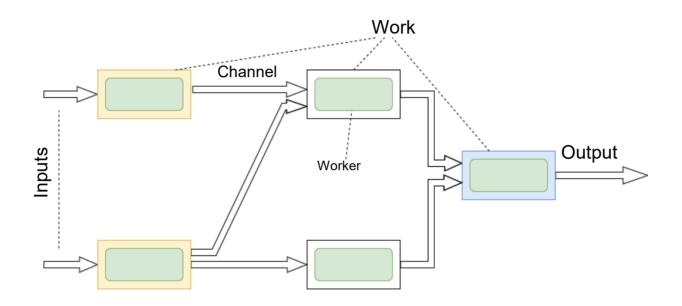

Varying the worker: get mode

FIR-filter (401 taps)

IIR-filter (Butterworth, 3 order, 14 taps)

Varying the worker: get mode

FIR-filter (301 taps)

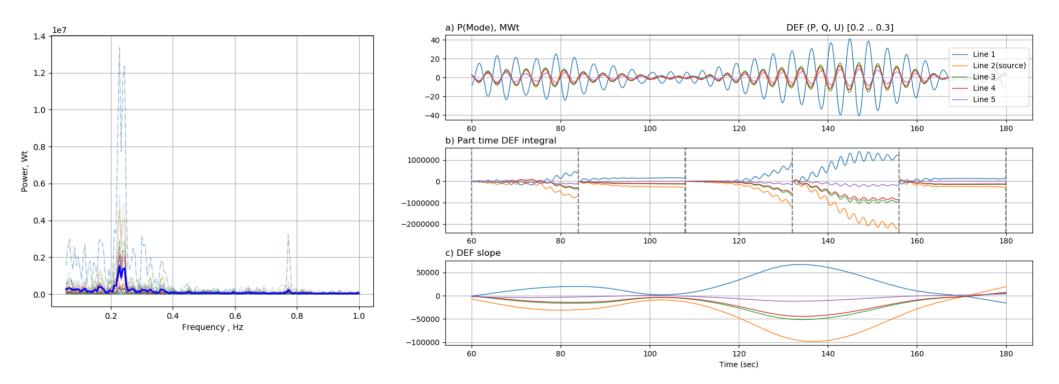

IIR-filter (Butterworth, 3 order, 14 taps)

Dsplab

- Field of application: Development of the DSP routines that require a flexible configuration of different stages of calculations on the user level; investigation of variety of methods solving the same DSP task.
- User can define the plan of works and then set the workers. The replacement of the worker does not destroy the workflow.
- Types of nodes: Work, Map (Loop), Select and Pack
- Licence: LGPLv3
- Programming language: Python 3

github.com/aleneus/dsplab

Parallel implementation

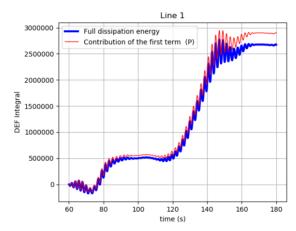


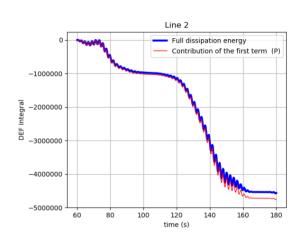
- There are different strategies for **splitting data** for parallel processing
- But the functional nature of the plan itself provides the automatic parallelism
- Suitable software development technologies: "lightweight" threads, channels

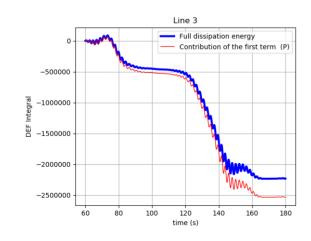
Real LFO cases

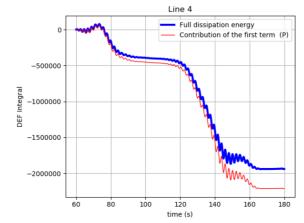
#	Date	Region	Number of data sources	Dataset	Record duration (min)	Mode (Hz)	Amplitude (P, MW), max	Duration of oscillations (min)
1	29.05.2018	North-central	83	f	5	0.5 - 0.7	-	1
2	07.03.2019	West	5	f, P, Q, U	4	0.7	12	3
3	02.05.2020	Central	114	Р	2	0.13, 0.3	12	2
4	04.05.2020	Central	114	Р	3	0.31	18	2
5	04.05.2020	Central	114	Р	2	0.25 - 0.3	20	1
6	16.06.2020	West	116	f, P, Q, U	4	0.25 - 0.3, 0.11	22	1
7	02.09.2020	South	47	f, P, Q, U, I	3	0.25	40	2
8	24.09.2020	South	67	P, Q, U	5	0.2 - 0.3	55	0,5
9	25.11.2020	Syberia	202	f, P, Q, U	15	0.35	30	10

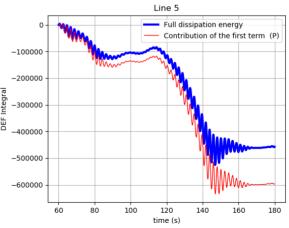
Case #7




a) Amplitude power spectrum Energy Flow method


b) Dissipation


P and Q contribution


$$DEF_{ij}(t) = \int \left(\Delta P_{ij} d\Theta_i + \Delta Q_{ij} \frac{dV_i}{V_i^*} \right)$$

Conclusion

- Detection the source of LFO is one of the **many stages** of processing the synchrophasor measurements data.
- Due to the **growing variety of methods** for solving individual subtasks, program tools, allowing us to **explore** combinations of methods and **apply** the most successful ones are in demand.
- An approach to the representation of the data processing in the form of a generalized scheme (**plan**) with the possibility of variation of the used stage implementations is proposed.
- In the context of a generalized processing scheme, the **DEF method**has been successfully applied to analyze several real LFO cases in
 the power system of Russia.

Thank you for your attention!

Kirill Butin k.butin@ens.ru

Alexandr Popov <u>a.popov@ens.ru</u>

Dmitry Dubinin <u>dubinin@so-ups.ru</u>

Andrey Rodionov <u>a.rodionov@ens.ru</u>

